
Part 2 - Numerics

1 The Numerical Problem

1.1 Well-posedness

Definition 1.1.1. A mathematical problem in numerics consists of finding
x ∈ X, where X is some space, such that

F (x, d) = 0.

for a given function F : X ×D → R and given data d ∈ D

Example. 1. F : Rn×Rm → R, F (x, d) = Ax−d2 for A ∈ Rm×n, d ∈ Rm.
Solutions solve the lin. system Ax = d

2. F : R × R → R, F (x, d) =
 d

0
e−ξ2dξ


− x

Definition 1.1.2. A mathematical problem is called well-posed. if for all
d ∈ D a unique solution x ∈ X exists and the solution depends continuously
on d ∈ D.

Remark. Here, we will only consider well-posed problems, so that there exists

ϕ : D → X,F (ϕ(d), d) = 0 ∀d ∈ D.

Solving a problem thus reduces to evaluating ϕ at d ∈ D.

Typically, there will be errors associated with the given data (e.g. Round-off
errors, measurement errors). An important part of numerics is the estimation
how such errors affect the computed solution. (Conditioning and stability)

We will also be concerned with computability of solutions (Algorithmics).
Often, it is convenient to approximate the ”true” solution ϕ(d) by an easier
to compute function ϕε(d), this leads to questions of convergence.
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1.2 Numerical complexity

Of course, the number of elementary computations that have to be per-
formed to obtain a result is important (Numerical complexity). Typically,
one is interested in the scaling of the number of computations with respect
to the size of the problem, e.g. , is solving Ax = b for A ∈ Rn×m taking
O(n2),O(n3),O(n!) operations.

m(n) = O(f(n)) if |m(n)

f(n)
| n→∞→ c.

2 Matrix factorizations

We want to find L,U s.t. linear systems Lx = b, Uy = c are easy to solve
and A = LU . Then solving Ax = b is easy

1. Solve Ly = b

2. Solve Ux = y

2.1 Triangular matrices

Definition 2.1.1. L = (ℓij)
n
ij=1 ∈ Rn×n is called lower triangular if ℓij = 0

for i < j.
U = (uij)

n
ij=1 ∈ Rn×n is called upper triangular if UT is lower triangular.

A triangular matrix D ∈ Rn×n is called normalized if dii = 1 for i = 1, . . . , n.

Algorithm 2.1.2 (Back substitution). Let U ∈ Rn×n be a regular upper
triangular matrix, and let b ∈ Rn. Compute x ∈ Rn by:
for i = n : −1 : 1

xi =

bi −

n
j=i+1 uijxj


1
uii

Remark. The total number of basic computations for backsubstitution is
O(n2)

Lemma 2.1.3. Let U, V ∈ Rn×n be upper triangular, then UV is upper
triangular. If U is also regular, then U−1 is upper triangular with (U−1)ii =
1
uii
.
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2.2 LU-factorization

Definition 2.2.1. A factorization A = LU with L ∈ Rn×n lower and U ∈
Rn×n upper triangular is called LU -factorization of A ∈ Rn×n. It is called
normalized if L is normalized.

Theorem 2.2.2. Let A ∈ Rn×n be a regular matrix. TFAE

1. ∃! normalized LU-factorization of A

2. All submatrices Ak = (aij)
k
ij=1 ∈ Rk×k are regular.

Lemma 2.2.3. Let A = LU be a normalized LU-factorization. We then
have

aik = uik +
i−1

j=1

ℓijujk, aki = ℓkiuii +
i−1

j=1

ℓkjuji.

Solving for the respective non-trivial entries of L and U , we obtain

Algorithm 2.2.4. Let A ∈ Rn×n admit a normalized LU decomposition.
The non-trivial entries of L and U can be computed by

for i=1:n do
for k=i:n do

uij = aik −
i−1

j=1 ℓijujk

end
for k=i+1:n do

ℓki =

aki −

i−1
j=1 ℓkjuji


/uii

end

end

Remark. The numerical complexity of the computation of an LU -decomposition
of an n× n matrix is O(n3).

Example. 1. The matrix

A =


1 1
1 
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admits a LU -decomposition and is regular. However, A−1


1
1


=


1
0



and A−1


1

1 + 


=


0
1


. We thus see that a small change in the data

results in a large change in the result. This is an issue of conditioning
of the problem.

2. The matrix

A =


 1
1 0



has no problem with conditioning. Its inverse is

A−1 =


0 1
1 −


,

and one can easily see that solutions of the linear system Ax = b change
one the same order as the data b changes. The LU -factorization of A,
however, is given by

L =


1 0
1


1


, U =


 1
0 −1




.

Thus, a small (e.g. roundoff) error introduced for example in between
solving the two triangular systems may become large. This is an issue
of stability of the algorithm.

2.3 Cholesky factorization

If A is symmetric, then only n(n + 1)/2 entries of A are relevant. We may
be able to take advantage of this. Assume that A = LLT for A,L ∈ Rn×n

and L lower triangular. We compute

AT =

LLT

T
= LLT = A,

xTAx = xT

LLT


x =


LTx

T 
LTx


=

LTx
2

2
≥ 0.

The matrix A must thus be symmetric for such a factorization to exist, and
if A or L is regular, A must be positive definite.

Lemma 2.3.1. If A is symmetric and positive definite, then detA > 0 and
all submatrices Ak of A are positive definite.
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Definition 2.3.2. A factorization A = LLT with lower triangular matrix
L ∈ Rn×n is called Cholesky factorization.

Theorem 2.3.3. Let A ∈ Rn×n be a symmetric, positive definite matrix.
Then there exists a unique Cholesky factorization A = LLT of A with ℓii > 0
for i = 1 . . . n.

Lemma 2.3.4. If A = LLT , we have

aik =


ℓikℓkk +

k−1
j=1 ℓijℓkj for i > k,

ℓ2kk +
k−1

j=1 ℓ
2
kj for i = k.

Solving for the entries of L again leads to

Algorithm 2.3.5. Let A ∈ Rn×n be symmetric and positive definite with
Cholesky factorization A = LLT . The non-trivial entries of L can be com-
puted by

for k=1:n do

ℓkk =

akk −

k−1
j=1 ℓ

2
kj

1/2

for i=k+1:n do

ℓik =

aik −

k−1
j=1 ℓijℓkj


/ℓkk

end

end

3 Conditioning and stability

In the following, we consider well-posed numerical problems φ : D → X,
where D and X are suitable spaces endowed with a norm.
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3.1 Condition number

Definition 3.1.1. The (relative) condition number κφ(d) of φ : D → X at
x ∕= 0 is given by

κφ(d) = inf


κ ≥ 0 : ∃δ > 0 so that

φ(d+∆d)− φ(d)
φ(d) ≤ κ

∆d
d

for all ∆d ∈ D with
∆d
d < δ



A problem is called ill-conditioned if κφ(d) ≫ 1.

Theorem 3.1.2. φ : D → X is differentiable at d ∈ D, then

κφ(d) =
Dφ(d)d

φ(d) .

3.2 Stability

Definition 3.2.1. An algorithm for the (possibly approximate) computation
of the numerical problem φ : D → X is a map φ̃ : D → X, which is given by
the consecutive application of elementary computations, i.e.,

φ̃ = fJ ◦ fJ−1 ◦ · · · ◦ f2 ◦ f1.
Definition 3.2.2. An algorithm φ̃ is called unstable if there is a perturbation
d̃ of d such that the error introduced by inexact elementary computations in
the algorithm is significantly larger than the error introduced by the pertur-
bation itself, i.e.,

|φ̃(d̃)− φ(d)|
|φ(d)| ≫ |φ(d̃)− φ(d)|

|φ(d)| .

An algorithm is called stable if it is not unstable.

Example. The problem of evaluating the function

φ(d) =
1

d
− 1

d+ 1
=

1

d(d+ 1)

is stable for large numbers d, as for d̃ = (1+d)d, we have φ(d)−φ̃(d) ≈ 2dd
2

d4
.

The outcome of the two possible algorithms below (where parenthesis indicate
order of computation), however, differs substantially.

φ̃1(d) =


1

d


−


1

d+ 1


, φ̃2(d) =

1

(d(d+ 1))
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3.3 Condition number of linear operators

Definition 3.3.1. Given norms ·Rm and ·Rn on Rm and Rn, respectively,
the (induced) operator norm for A ∈ Rm×n is given by

Aop = sup
x∈Rn, x||Rn=1

AxRm .

Lemma 3.3.2. Given norms  ·  on Rn and Rm, respectively, let  · op be
the induced operator norm on Rm×n. We then have

1.  · op defines a norm Rm×n

2. Aop = supx∈R∗.|x|=1 Ax = inf {c > 0 : ∀x ∈ RnAx ≤ cx}

3. for A ∕= 0 and x ∈ Rn with x ≤ 1 and Ax = Aop we have x = 1

4. the infimum and supremum in 2. are attained.

Lemma 3.3.3. Given norms  · on Rn and Rm, respectively, denote by  ·
the induced operator norm on Rm×n. We then have

1. For A ∈ Rexm and B ∈ Rm×n we have AB ≤ AB.

2. The identity matrix Id ∈ Rn×n satisfies In = 1.

3. Any operator norm Rn×n satisfies Aop ≥ |λ| for all symmetric matri-
ces A ∈ Rn×n and any eigenvalue λ of A.

Remark. The Frobenius norm AF of a matrix A ∈ Rm×n is given by

AF =


m

i=1

n

i=1

a2ij

 1
2

= trAAT .

It is not an operator norm.

Theorem 3.3.4. Let  ·  be an operator norm no Rn×n, induced by  ·  on
Rn. Let A ∈ Rn×n be regular and let x, x̄, b, b̄ ∈ Rn, so that

Ax = b, Ax̃ = b̃.

We then have
x− x̃
x ≤ A

A−1
 b− b̃

b
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Definition 3.3.5. The condition number of a regular matrix A ∈ Rn×n with
respect to the operator norm induced by  ·  on Rn is given by

cond(A) = A
A−1

 .

When considering ℓp-norms we write condp instead of cond·p .

4 Elimination algorithms

4.1 Gauß elimination

Algorithm 4.1.1 (Gauß elimination). Let A ∈ Rn×n and b ∈ Rn.

1. Set A(1) = A and b(1) = b, and set k = 1.

2. For A(k) assume a
(k)
ij = 0 for 1 ≤ j ≤ k − 1 and i ≥ j + 1. Setting

ℓik = a
(k)
ik /a

(k)
kk for i = k + 1, . . . , n we define the normalized lower

triangular matrix L(k) ∈ Rn×n by:

A(k) =





a
(1)
11 . . . . . . a

(1)
1n

. . .
...

a
(k)
kk . . . a

(k)
kn

...
...

a
(k)
nk . . . a

(k)
nn




, L(k) =





1
. . .

1
−ℓk+1,k

...
. . .

−ℓnk 1





We then have for A(k+1) = L(k)A(k), that a
(k+1)
ij = 0 for 1 ≤ j ≤ k and

i ≥ j + 1, i.e.,

A(k+1) =





a
(1)
11 . . . . . . a

(1)
1n

. . .
...

a
(k)
kk . . . . . . a

(k)
kn

a
(k+1)
k+1,k+1 . . . a

(k+1)
k+1,n

...
...

a
(k+1)
n,k+1 . . . a

(k+1)
nn





.
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Further let b(k+1) = L(k)b(k).

3. Stop if k + 1 = n; otherwise increase k → k + 1 and go to step (2).

Theorem 4.1.2. If A ∈ Rn×n is regular, then the Gauß elimination al-
gorithm is executable if and only if A admits an LU-decomposition. The
algorithm then yields the normalized LU-decomposition of A with U = A(n)

and L =

L(n−1) . . . L(1)

−1
.

The modified right hand side y = b(n) is given by y = L−1b and the solution x
of the linear system of equations Ax = b can be computed by solving Ux = y.

4.2 Pivoting

Algorithm 4.2.1. Gauß elimination with partial pivoting Let A ∈ Rn×n be
a regular Matrix und b ∈ Rn. We compute the decomposition PA = LU and
y = U−1b by

for k=1:n-1 do

find p ∈ {k, . . . , n} so that
a(k)pk

 = maxi=k,...,n

a(k)ik

;

exchange rows p and k in

A(k) | b(k)


to obtain


Ã(k) | b̃(k)


;

for i=k+1:n do

ℓik = ã
(k)
ik /ã

(k)
kk ; b

(k+1)
i = b̃

(k)
i − ℓikb̃

(k)
k

for j=k+1:n do

a
(k+1)
ij = ã

(k)
ij − ℓikã

(k)
kj

end

end

end

Remark. Exchange of rows can also be expressed by a permutation matrix,
i.e., Ã(k) = P (k)A(k), with P (k) is the matrix that is obtained by exchanging
rows p and k in the identity matrix.

Remark. There is also total pivoting where also columns are exchanged, but
this is usually not done because it is very slow.
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Theorem 4.2.2. For A ∈ Rn×n regular, the Gauß-elimination algorith mwith
partial pivoting can be executed. It yields the LU-decomposition PA = LU
with |lij| ≤ 1 for all 1 ≤ j ≤ n and the modified rhs b(n) = L−1Pb. Here
P = P (n−1)P (n−2) . . . P (1) where P (k) is a permutation matrix to permute the
rows in the k-th step.

Proof. • Assume the alg. can not be executed at the k-th step. Then
the matrix must have ajk = 0for j ≥ k. Such a matrix can not be
regular. However up to that step only regular lower triangular and
regular permutation matrices were applied. This is a contradiction.

• The statement about |lij| ≤ 1follows immediately by lik = a
(k)
ik /a

(k)
pk but

|a(k)pk | ≥ |a(k)ik | due to pivoting.

• Noting that (P (k))−1 = P (k), we compute

A(1) = A

A(2) = L(1)P (1)A(1) = L(1)P (1)A

A(3) = L(2)P (2)A(1) = L(2)P (2)L(1)P (1)A = L(2)

P (2)L(1)P (2)


P (2)P (1)A

A(4) = L(3)

P (3)L(2)P (3)

 
P (3)P (2)L(1)P (2)P (3)

 
P (3)P (2)P (1)A



. . .

Setting L̂(k) = P (n−1)P (n−2) . . . P (k+1)L(k)P (k+1) . . . P (n−2)P (n−1) we get
A(n) = L̂(n−1) . . . L̂(1)PA.
Since L̂(k) has the same structure as L(k) we get the desired decompo-
sition. The statement about b(n) is then also clear.

Remark. We still need O (n3) operations for this algorithm.

5 Least squares problems

5.1 Gaußian normal equation

We look at overdetermined problems, i.e. for A ∈ Rm×n m ≥ n, b ∈ Rm find
x ∈ Rn s.t. Ax ≈ b in a good way.

10



Example. Linear regression for measurements (ti, yi).

Definition 5.1.1. Given A ∈ Rm×n, b ∈ Rm, we define the least squares
problem of

minimize x → Ax− b22

The vector r = Ax− b ∈ Rm is called residual.

Theorem 5.1.2. Solutions of the least squares problem are given by the
solutions of the Gaußian normal equation

ATAx = AT b

In particular, a solution exists. If z ∈ Rn is a further solution, then Ax = Az
and the residuals agree.

Proof. We note that Rm = Im (A) ⊕ ker

AT


and Im (A) ⊥ ker


AT



Given b ∈ Rm we thus have uniquely determinend, orthogonal vectors y ∈
Im (A) , r ∈ ker


AT


with y · r = 0, b = y + r. Further, we have x ∈ Rn :

y = Ax. This yields

AT b = ATy + AT r = ATy = ATAx.

Now let z ∈ Rn and compute

b− Az22 = b− Ax+ A (x− z) 22
= b− Ax22 + 2 (b− Ax)  

=r

· (A (x− z)) + A (x− z) 22

= b− Ax22 + 2AT r
=0

· (x− z) + A (x− z) 22

= b− Ax22 + A (x− z) 22 ≥ b− Ax22

Thus x is a minimizer and a solution to the least squares problem.
If z is also a minimizer , then above we need an equality and thus A (x− z) 22 =
0 =⇒ A (x− z) = 0, thus x − z ∈ ker (A)

Ex.
= ker


ATA


. In particular,

if z is a minimizer, it also solves the Gauß normal equation. We also get
Ax = Az.

Remark. We have used that ker

ATA


= ker (A). This is an exercise.
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Lemma 5.1.3. ATA is symmetric and pos. semidefinite. It is pos. def. iff
ker (A) = {0}, i.e. A is injective.

Proof. Exercise.

Remark. cond2


ATA


= ATA2


ATA

−1 2 =
λmax(ATA)
λ
min(ATA)

= cond2
2 (A) if

A ∈ Rn×n. So conditioning of ATA is usually not good. We thus typically
do not use the Gaußian normal equation to solve least squares problems.

5.2 Householder trasformations

Note that for Q orthogonal, i.e. Q ∈ O (n) we have

A (Ax− b) 22 = Ax− b22

Remark. For Q ∈ O (n) we have cond2 = 1.

Definition 5.2.1. Given v ∈ Rl, v2 = 1, the matrix Pv = 1−2vvT is called
Householder trasformation.

Lemma 5.2.2. Every Householder transfomration Pv = 1 − 2vvT is sym-
metric and orthogonal. We have Pvv = −v and Pvw = w for v · w = 0

Lemma 5.2.3. Let x ∈ Rℓ\{0} and x /∈ span {e1}. With σ = sign (x1) if
x1 ∕= 0 and σ = 1 otherwise, set

v =
x+ σx2e1

x+ σx 2e12
We then have

Pvx =

Iℓ − 2vvT


x = −σxe1.

5.3 QR-Decomposition

Theorem 5.3.1. Let A ∈ Rm×n with m ≥ n and rankA = n. Then there
exist Q ∈ O(m) and a generalized upper triangular matrix R ∈ Rm×n, i.e, we
have rij = 0 for i > j, such that
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A = QR = Q





r11 r12 . . . r1n
r22 . . . r2n

. . .
...

rnn





We further have |rii| > 0 for all 1 ≤ i ≤ n. This factorization is called
QR-decomposition.

Theorem 5.3.2. Let A ∈ Rm×n with m ≥ n and rankA = n. Using the
QR-decomposition A = QR and

QT b =


c
d


, QTA = R =


R̂
0



with c ∈ Rn, d ∈ Rm−n and an upper triangular matrix R̂ ∈ Rn×n the solution
of the least squares problem defined by A and b is given by the solution x of
R̂x = c.

Remark. ForA ∈ Rn×n we have cond2(R) = cond2(A). TheQR-decomposition
thus yields a stable algorithm to compute the solution of a least squares prob-
lem.

6 Iterative methods for linear systems

Especially if a matrix is sparse, i.e., a significant number of its entries are zero,
it is often advantageous to use an iterative method, where in each iteration
the matrix is simply applied to a vector, to approximate the solution of a
linear system. Such methods are often based on Banach fixed point theorem.
We recall

Theorem 6.0.1. if Φ : Rn → Rn is a contraction, i.e., there exists q ∈ [0, 1)
so that ||Φ(x) − Φ(y)|| ≤ q||x − y|| for some norm || · ||, then Φ admits a
unique fixed point x∗ ∈ Rn, i.e., Φ (x∗) = x∗. For any starting value x0 ∈ Rn,
the fixed point iteration xk+1 = Φ


xk

(k = 0, 1, 2, . . .), defines a sequence

converging to x∗ with the property that

xk − x∗ ≤ qk

1− q

x1 − x0
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6.1 Linear iteration methods

Assume that the map Φ : Rn → Rn is given by Φ(x) = Mx+ s with a matrix
M ∈ Rn×n. We then see that Φ is a contraction if a norm exists such that
the corresponding operator norm satisfies ||M || < 1.

Theorem 6.1.1. For M ∈ Rn×n we have

ρ(M) = max{|λ| : λ ∈ C is a complex eigenvalue of M}
= inf{Mop :  · op is an induced norm on Cn×n}.

Corollary 6.1.2. If ρ(M) < 1 then Φ : x → Mx+ s defines a contraction.

Example. The Richardson method to approximate the solution of a linear
system of equations Ax = b is, given ω > 0, defined by M = In − ωA and
c = ωb, i.e.,

xk+1 = Mxk + c = xk − ω

Axk − b


.

If A is symmetric and positive definite, then all Eigenvalues of A are positive,
and for ω sufficiently small we have ρ (In − ωA) < 1. If xk+1 = xk, then xk

is a solution of Ax = b.

6.2 Jacobi and Gauß-Seidel method

We consider the additive split A = L + U + D, where L is strictly lower
triangular, U is strictly upper triangular, and D is diagonal. We consider
methods xk+2 = Mxk + c.

Definition 6.2.1. The Jacobi and Gauß-Seidel method are defined by

MJ = −D−1(A−D), cJ = D−1b

MGS = −(L+D)−1U, cGS = (L+D)−1b.

Definition 6.2.2. A matrix A ∈ Rn×n is called diagonally dominant if, for
i = 1, 2, . . . , n we have



j=1,...,j ∕=i

|aij| ≤ |aii|

and if this inequality is strict for some i0 ∈ {1, 2, . . . , n}. If the inequality is
strict for all i = 1, 2, . . . , n, then A is called strictly diagonally dominant.
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Remark. We can quickly see that the Jacobi and Gauß-Seidel method define
converging sequences xk if A is strictly diagonally dominant. Unfortunately,
this is usually too much to ask in practice.

Definition 6.2.3. A matrix A ∈ Rn×n is called reducible, if disjoint, non-
empty index sets I, J ⊂ {1, 2, . . . , n} exist, so that I ∪ J = {1, 2, . . . , n} and
aij = 0 for all pairs (i, j) ∈ I × J . Otherwise A is called irreducible.

Theorem 6.2.4. If A is irreducible and diagonally dominant, then the Jacobi
and Gauß-Seidel methods are executable and convergent.

7 Polynomial interpolation

We consider the problem of finding a polynomial of degree no more than n,
i.e, a function in

Pn =


n

i=0

aix
i : a0, a1, . . . , an ∈ R



interpolating a given set of pairs of nodes and values.

7.1 Lagrange interpolation

Definition 7.1.1. Given nodes a ≤ x0 < x1 < · · · < xn ≤ b and values
y0, y1, . . . , yn, the Lagrange interpolation problem consists in finding a poly-
nomial p ∈ Pn so that p (xi) = yi for i = 0, 1, . . . , n.

Definition 7.1.2. Given nodes x0 < x1 < · · · < xn, the corresponding
Lagrange polynomials L0, L1, . . . , Ln ∈ Pn are given by

Li(x) =
n

j=0
j ∕=i

x− xj

xi − xj

=
(x− x1)

(xi − x1)
· · · (x− xi−1)

(xi − xi−1)

(x− xi+1)

(xi − xi+1)
· · · (x− xn)

(xi − xn)
.

Remark. We have Li (xj) = δij for 0 ≤ i, j ≤ n.
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Theorem 7.1.3. The Lagrange interpolation problem is uniquely solved by
taking

p =
n

i=0

yiLi.

The polynomial p is calle (Lagrange) interpolation polynomial.

7.2 Interpolation error

If yj = f(xj) with nodes xj and a given function f , we may ask how far the
interpolation polynomial p is from the function f .

Theorem 7.2.1. Let f ∈ Cn+1([a, b]), a ≤ x1 < x2, . . . , < xn ≤ b and
let f (xi) = yi for i = 0, 1, . . . , n. If p ∈ Pn is the Lagrange interpolation
polynomial, then for x ∈ [a, b] there exists ξ ∈ [a, b], so that

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!

n

j=0

(x− xj) .

Corollary 7.2.2. The interpolation error satisfies

f − pC0([a,b]) ≤

f (n+1)

C0([a,b])

(n+ 1)!
(b− a)n+1.

Remark. If the norms of the derivatives of f does not grow too quickly as
n → ∞, then the preceding corollary yields uniform convergence of the in-
terpolating polynomial when increasing its order. This estimate, however,
may by not optimal as it does not consider the effect of choosing the nodes
in an optimal way. When, for example, taking evenly spaced nodes, the
interpolation of

f : [−1, 1] → R, f(x) =
1

1 + 25x2

yields larger and larger oscillation when the order of the polynomial is in-
creased.
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7.3 Chebyshev nodes

We may decrease the interpolation error by finding nodes which minimize
the values of the nodal polynomial

w(x) =
n

j=0

(x− xj)

on [a, b]. We consider here the case [a, b] = [−1, 1].

Definition 7.3.1. For n ∈ N0, the n-th Chebyshev polynomial on t ∈ [−1, 1]
is given by

Tn(t) = cos(n arccos t),

The roots of a Chebyshev polynomial are called Chebyshev nodes.

Lemma 7.3.2. 1. We have |Tn(t)| ≤ 1 for all t ∈ [−1, 1].

2. With T0(t) = 1 and T1(t) = t, we have

Tn+1(t) = 2tTn(t)− Tn−1(t)

for t ∈ [−1, 1]. In particular, this yields Tn ∈ Pn|[−1,1] and n ≥ 1 we
have Tn(t) = 2n−1tn + qn−1(t) with qn−1 ∈ Pn−1|[−1,1].

3. For n ≥ 1 the polynomial Tn has the n roots tj = cos((j + 1/2)π/n),
j = 0, 1, . . . , n − 1, and n + 1 extremal points sj = cos(jπ/n), j =
0, 1, . . . , n.

Theorem 7.3.3. Let t0, t1, . . . , tn ∈ [−1, 1] be the roots of the Chebyshev
polynomial Tn+1. We then have

min
x0,...,xn∈[−1,1]]

max
x∈[−1,1]

n

j=0

|x− xj| = max
x∈[−1.1]

n

j=0

|x− tj| = 2−π.
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8 Discrete Fourier transforms

8.1 Trigonometric interpolation

Definition 8.1.1. For m ∈ N, n = 2m, Nodes xj =
2πj
n

and values yj ∈ R,
j = 0, . . . , n− 1 we find al, bl ∈ R, l = 1, . . . ,m− 1 and a0, am ∈ R s.t. for

T (x) =
a0
2

+
m−1

l=1

(al cos (lx) + bl sin (lx)) +
am
2

cos (mx)

we have T (xj) = yj for j = 0, . . . , n − 1. This is called real trigonometric
interpolation problem.

Definition 8.1.2. The complex trigonometric interpolation problem consists
in finding βk ∈ C, k = 0, . . . , n − 1 s.t. for xj =

2πj
n
, yj ∈ C, j = 0, . . . , n − 1

and

p (x) = β0 + β1e
ix + . . .+ βn−1e

i(n−1) =
n−1

k=1

βke
ikx

s.t. p (xj) = yj for j = 0, . . . , n− 1

Theorem 8.1.3. Fix n = 2m, y0, . . . , yn−1 ∈ R. The coefficients βk, k =
0, . . . , n−1 solve the complex trig-interpol problem iff the coefficients al, bl, l =
1, . . . ,m− 1 given by a0 = 2β0, al = βl+β2m−l, bl = i (βl − β2m−l) , am = 2βm

solve the real trig-interpol problem given by y1, . . . , yn−1

Proof. Ingedients: e−ilx = e
−i2πlj

n = e
i2π(n−l)j

n = ei(n−l)xj

eix = cos (x) + i sin (x).
This implies

a0
2

+
m−1

l=1

(al cos (lxj) + bl sin (lxj)) +
am
2

cos (mxj)

=
a0
2
β0

+
m−1

l=1

al − ibl
2  
βl

eilxj +
m−1

l=1

al + ibl
2  

βn−l

ei(n−l)xj +
am
2

βn−1

eimxj + e−imxj

2
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8.2 Fourier basis

If we write p (xj) = yj in vectorial form, we obtain

y =




y0
...

yn−1



 =
n−1

k=0

βk




eikx0

...
eikxn−1



 =
n−1

k=0

βkω
k with ωk =




eikx0

...
eikxn−1





For this to have a solution, we need (ω0, . . . ,ωn−1) to be a basis of Cn.

Definition 8.2.1. For n ∈ N let ωn = e
i2π
n be the n-th root of unity and for

k = 0, . . . , n− 1 let

ωk =





ω0k
n

ω1k
n
...

ω
(n−1)k
n





Then (ω0, . . . ,ωn−1) are called Fourier basis of Cn.

Proposition 8.2.2. The Fourier basis is an orthogonal basis of Cn, i.e.
ωk · ωl = nδkl.

Proof. Exercise.

Lemma 8.2.3. The transformation from Fourier to canonical basis is per-
formed by the matrix

Tn =

ω0 . . . ωn−1


∈ Cn×n

with inverse T−1
n = 1

n
Tn

T
, i.e. for y =

n−1
i=0 yiei ∈ Cn we have

y =
n−1

k=0

βkω
k with β =

1

n
Tn

T
y

Proof. Clear, if noting that 1√
n
Tn ∈ U (n).

Remark. y → β = 1
n
Tn

T
y is called discrete Fourier transform,

β → y = Tnβ is called inverse DFT.
As the transformation is unitary (modular constant) it is stable.
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8.3 Fast Fourier transform

Example. Lets look at the inverse Fourier transform y = T8β, noting that

ωl
8 =


e

i2π
8

l

= e
li2π
8 = e

(l mod 8)2π
8 = ωl mod 8

8 We have





y0
y1
y2
y3
y4
y5
y6
y7





=





ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8

ω0
8 ω1

8 ω2
8 ω3

8 ω4
8 ω5

8 ω6
8 ω7

8
...

... ω4
8 ω6

8 ω0
8 ω2

8

...
...

ω6
8 ω1

8

... ω7
8

ω0
8 ω4

8 ω4
8

ω7
8 ω1

8

ω2
8 ω6

8

ω0
8 ω7

8 ω6
8 ω5

8 ω4
8 ω3

8 ω2
8 ω1

8









β0
...

β7





Sorting by odd and even indices yiels





y0
y1
y2
y3
y4
y5
y6
y7





=





ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8 ω0
8 ω0

8

ω0
8 ω2

8 ω4
8 ω6

8 ω1
8 ω3

8 ω5
8 ω7

8

ω0
8 ω4

8 ω0
8 ω4

8 ω2
8 ω6

8 ω2
8 ω6

8

ω0
8 ω6

8 ω4
8 ω2

8 ω3
8 ω1

8 ω0
7 ω5

8

ω0
8 ω0

8 ω0
8 ω0

8 ω4
8 ω4

8 ω4
8 ω4

8

ω0
8 ω2

8 ω4
8 ω6

8 ω5
8 ω7

8 ω1
8 ω3

8

ω0
8 ω4

8 ω0
8 ω4

8 ω6
8 ω2

8 ω6
8 ω2

8

ω0
8 ω6

8 ω4
8 ω2

8 ω7
8 ω5

8 ω3
8 ω1

8









β0

β2

β4

β6

β1

β3

β5

β7





=


T4 D4T4

T4 −D4T4







β0

β2

β4

β6

β1

β3

β5

β7





with

D4 =





ω0
8

ω1
8

ω2
8

ω3
8





Thus we have




y0
y1
y2
y3



 = T4





β0

β2

β4

β6



+D4T4





β1

β3

β5

β7
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y4
y5
y6
y7



 = T4





β0

β2

β4

β6



−D4T4





β1

β3

β5

β7





Theorem 8.3.1. For β ∈ C2m let Dm ∈ Cm×m the diagonal matrix with
entries (Dm)ll = ωl

2m, l = 0, . . . ,m− 1.

Then y = T2mβ is given by


y1

y2


with y1, y2 ∈ Cm given by

y1 = Tmβ
even +DmTmβ

odd

y2 = Tmβ
even −DmTmβ

odd

where

βeven =





β0

β2
...

β2m−2




, βodd =





β1

β3
...

β2m−1





Proof. Analogous to example.

We have taken a problem of size n with complexity A (n) and split it into 2
problems of size n

2
with complexityA


n
2


+ putting together with complexity

3n
2
. If n = 2l we can iterate

A (n) → 2A
n
2


+

3n

2
→ 2


A
n
4


+

3n

4


+

3n

2

→ . . . → 2lA (1) + l
3n

2

So we get from O (n2) to O (nO (1) + log2 (n)n) = O (n log2 (n))

9 Numerical Quadrature

9.1 Quadrature rules

We want to approximate
 b

a
f (x) dx =: I (f).
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Definition 9.1.1. A quadrature formula on [a, b] is a linear map

Q : C ([a, b]) → R,

Q (f) =
n

i=0

ωif (xi)

with nodes xi, i = 0, . . . , n and quadrature weights ωi, i = 0, . . . , n. The
number Q = 1

b−a

n
i=0 |ωi| is called its stability indicator.

Example. For a = x0 < x1 < . . . < xn = b we can approximate the Riemann
integral by

 b

a

f (x) dx ≈
n−1

i=0

(xi+1 − xi) f (xi)

Remark. We always have

|Q (f) | ≤ Q (b− a) fC0([a,b])

Definition 9.1.2. A quadrature formula is called exact of degree r, ifQ (p) =
I (p) for all p ∈ Pr

Theorem 9.1.3. Assume Q is exact of degree r ≥ 0. We then have

n

i=0

ωi = b− a

and for f ∈ C0 ([a, b]) we have

|I (f)−Q (f) | ≤ (1 + Q) (b− a) min
p∈Pr

f − pC0([a,b])

If also ωi ≥ 0 for i = 0, . . . , n then |Q| = 1

Proof. We have


ωi = Q (1)
r≥0
= I (1) = b − a. Take now f ∈ C0, p ∈ Pr

with I (p) = Q (p). We have

|I (f)−Q (f) | = |I (f − p)−Q (f − p) | ≤ |I (f − p) |+ |Q (f − p) |

≤ (b− a) f − pC0 + (


|ωi|)f − pC0

≤ (1 + Q) (b− a) f − pC0

taking min over p ∈ Pr yields the result.
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Remark. 1. Result from polynomial interpolation yields

|I (f)−Q (f) | ≤ (1 + Q) (b− a)
f (r+1)C0

(r + 1)!
(b− a)r+1

2. Symmetry may further improve things: Q exact of degree 2q, q ∈ N0,
weights & nodes symetric wrt. b+a

2
yields exact of degree 2q + 1.

3. Transformation to other invervals by affine map.

9.2 Newton-Cotes formulas

Consider nodes xi, i = 0, . . . , n and for f ∈ C0 ([a, b]) the Lagrange interp.
polynomial p =

n
i=0 f (xi)Li, with Li the Lagrange polynomial for the point

xi. We now approximate the integral of f by the integral of p, which yields

 b

a

p (x) dx =
n

i=0

f (xi)

 b

a

Li (x) dx

  
=:ωi

=
n

i=0

f (xi)ωi = Q (f)

These are called Newton-Cotes formulas.

Theorem 9.2.1. Given nodes x0, . . . , xn, weights ωi =
 b

a
Li (x) dx, i =

0, . . . , n the the resultion Newton-Cotes formula is exact of degree n.

Example. 1. n = 0, x0 = b+a
2
: Midpointrule. → ω0 = b − a. Is exact of

degree r = 1 (symmetry).

2. n = 1, x0 = a, x1 = b: Trapezoidal rule. → ω0 = ω1 = b−a
2
. Exact of

deg r = 1.

3. n = 2, x0 = a, x1 =
b+a
2
, x2 = b: Simpsons rule. → ω0 =

b−a
6

= ω2,ω1 =
2(b−a)

3
. Is exact of deg r = 3 (symmetry).

4. n ≥ 7 is not good as weights can become negative.
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9.3 Summed quadrature rule

Definition 9.3.1. Let a = a0 < a1 < . . . < aN = b a unif. partition of [a, b]
and Ql : C

0 ([al−1, al]) → R be a quad. rule on [al−1, al], l = 1, . . . , N . Then

QN (f) =
N

l=1

Ql


f |[al−1,al]



is a summed quadrature rule.

Example. With trapezoidal rule on all [al−1, al] we get

QN (f) =
N

l=1

al − al−1

2
(f (al) + f (al−1))

=
b− a

2n
(f (a0) + 2f (a1) + . . .+ 2f (aN−1) + f (aN))

Theorem 9.3.2. If all quadr. formulas in each partition are exact of deg
r ≥ 0, then we have

|I (f)−QN (f) | ≤ (b− a)r+2


1 + max

l=1,...,N
Ql


N−(r+1)

(r + 1)!
f (r+1)C0([a,b])

Proof. Calculation.

Definition 9.3.3. QN is called convergent of order s ≥ 0 if

|QN (f)− I (f) | = O (hs)

for f ∈ Cs ([a, b]), where h = b−a
n
.

Example. Summed trapezoidal rule is convegent of order s = 2.

9.4 Gauß-quadrature

Lemma 9.4.1. A quadrature formula with n + 1 nodes and wights has at
most exactness of degree 2n+ 1.

Proof. Consider Q (f) =
n

i=0 ωif (xi) and let

p (x) =
n

i=0 (x− xi)
2 ∈ P2n+2 so that Q (p) = 0, but

 b

a
p (x) dx ∕= 0 as

p (x) ≥ 0 and there exist points where p (x) > 0.
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Lemma 9.4.2. A quadrature formula with n+1 nodes and weights (xi,ωi) , i =

0, . . . , n is exact of degree n iff ωi =
 b

a
Li (x) dx.

If it is exact of degree 2n, then ωi > 0, i = 0, . . . , n.

Proof. Exercise.

For Gauß-quadrature, we cosntruct n + 1 nodes, s.t. the maximal degree of
exactness r = 2n+1 is attained. More generally, we consider integrals of the
form

Iω (f) =

 b

a

f (x)ω (x) dx

with ω ≥ 0,ω ∈ C0 ([a, b]) weight function that defines a scalar product

(f, g)ω =

 b

a

f (x) g (x)ω (x) dx

on C0 ([a, b]).

Theorem 9.4.3. There exist orthogonal polynomials (πj)
n
j=0 s.t. πj ∈ Pj

and (πj, πi)ω = δjk for 0 ≤ j, k ≤ n. In particular we have

(πj, p)ω = 0 ∀p ∈ Pj−1

and the polynomials are a basis of Pn.

Proof. Exercise. (Gram-Schmidt)

Lemma 9.4.4. The roots of any ortho pol πj, 0 ≤ j ≤ n are simple, real and
contained in (a, b).

Proof. Assume the statement was false for a j ∈ {0, . . . , n}. If πj has a root

z ∈ R \ (a, b). Then p (x) = π(x)
x−z

∈ Pj−1 and we get

0 = (πj, p) =

 b

a

π2
j (x)

x− z
ω (x) dx

which is not possible as x− z ∕= 0 on (a, b) and πj ∕= 0.
If z is a multiple root or if z ∈ C \ R, then z is also a root and let

p (x) :=
πj(x)

(x−z)(x−z)
=

πj(x)

|x−z|2 ∈ Pj−2 and we get again a contradiction to

(πj, p)ω = 0.
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Example. 1. ω (x) = 1√
1−x2 on (−1, 1) we get the Chebyshev-polynomials

as the orthogonal family.

2. ω (x) = 1 on [−1, 1]

Pn (x) =
1

2nn!

dn

dxn


x2 − 1

n

Theorem 9.4.5. Let πn+1 the n + 1-th orthogonal polynomial w.r.t. the
weight function ω ∈ C0 ((a, b)). Using its roots (xi)i=0,...,n and weights

ωi =

 b

a

Li (x)ω (x) dx for i = 0, . . . , n

we obtain an quadrature formula

Qωf =
n

i=0

ωif (xi)

with Qωp = Iωp =
 b

a
p (x)ω (x) dx for all p ∈ P2n+1

Proof. The formula is well defined (correct number of nodes , all inside (a, b))
and it immediately satisfies

Qωr = Iωr ∀r ∈ Pn.

Now for p ∈ P2n+1 we obtain by poly. division q, r ∈ Pn with

p = qπn+1 + r

Since (q, πn+1)ω = 0 we obtain

Iωp =

 b

a

q (x) πn+1 (x)ω (x) dx

  
=(q,πn+1)ω=0

+

 b

a

r (x)ω (x) dx = Iωr

and

Qωp =
n

i=0

ωi



q (xi) πn+1 (xi)  
=0

+r (xi)



 =
n

i=0

ωir (xi) = Qωr
r∈Pn= Iωr
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Example. For ω (x) = 1 on [−1, 1] we get P0 (x) = 1, P1 (x) = x, P2 (x) =
1
2
(3x2 − 1) , P3 (x) =

1
2
(5x3 − 3x).

n = 0, x0 = 0,ω0 = 2
n = 1, x0 = −


1/3, x1 =


1/3,ω0 = 1,ω1 = 1

n = 2, x0 = −


3/5, x1 = 0, x2 =


3/5,ω0 = 5/9,ω1 = 8/9,ω2 = 5/9

10 Nonlinear problems

10.1 Rootfinding

Consider U ⊆ Rn, f : U → Rn we are looking to find x∗ ∈ U s.t. f (x∗) = 0.
Typically you cannot find an exact solution, so we need to look for a sequence
(xk)k∈N0

, s.t. xk → x∗. A method then iteratively generates the sequence
from a starting value x0 ∈ U .

Definition 10.1.1. A numerical method that yields a sequence (xk)k∈N0
of

approximation for a numerical problem is called

1. globally convergent if the sequence (xk)k∈N0
converges to a solution x∗

for any starting value x0 ∈ U

2. locally convergent if for every solution x∗ ∈ U there exists ε > 0 s.t.
xk → x∗ ∀x0 ∈ Bε (x

∗) ∩ U .

Definition 10.1.2. A locally convergent method is called convergent of order
α ≥ 1 if ∃q ∈ R s.t. for any solution x∗ ∈ U , every starting point x0 ∈
Bε (x

∗) ∩ U and the sequence (xk)k∈N0
generated by the method we have

lim
k→∞

sup
δk+1

δαk
= q for δk = x∗ − xk.

(and, if α = 1 we also have q < 1)

Remark. α = 1, q < 1: linear method
α = 2: quadratic method
α = 1, q = 0: superlinear
α = 1, q = 1: sublinear

Algorithm 10.1.3 (Bisection method). Let f ∈ C0 ([a, b]) , f (a) f (b) ≤ 0.
and let εstop > 0. Set a0, b0 = a, b and k = 0.
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1. Set ck =
ak+bk

2
.

2. Set (ak+1, bk+1) =

(ak, ck) if f (ak) f (ck) ≤ 0 (ck, bk) otherwise

3. Stop, if bk+1 − ak+1 ≤ εstop, otherwise set k → k + 1 and go to Step 1.

Theorem 10.1.4. The bisection method stops after J ≤ 1 + log2
b−a
εstop

steps.

Taking xk = ck as approximating sequence, it is globally convergent of order
α = 1 with q = 1

2
.

Remark. 1. A variant is false position rule, where instead of midpoint we
take where the affine line through f (ak) , f (bk) intersects 0.

2. Both work only in 1d.

Algorithm 10.1.5. Let f ∈ C0 ([a, b]) , f (a) f (b) ≤ 0 and εstop > 0, set
x0 = a, x1 = b, k = 1.

1. If f (xk) ∕= f (xk−1) set

xk+1 = xk −
xk − xk−1

f (xk)− f (xk−1)
f (xk)

2. Stop if |xk+1 − xk| < εstop, otherwise set k → k + 1, go to step 1.

Remark. 1. Can also take |f (xk+1) | < εstop as stopping criterion.

2. xk−xk−1

f(xk)−f(xk−1)
is an approx of (f ′ (xk))

−1

Now using a Taylor approximation of f ∈ C1 (U,Rn) around x ∈ U yields

0 = f (x∗) = f (x) +Df (x) (x∗ − x) + ϕ (x∗ − x)

Ignoring the small (when x∗ close to x) term ϕ (x∗ − x) we get

x∗ ≈ x−Df (x)−1 (f (x))
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, an iteration based on this is

xk+1 = xk −Df (xk)
−1 f (xk) .

this is Newton’s method.

Algorithm 10.1.6 (Newton). Let f ∈ C1 (U,Rn) , x0 ∈ U, εstop > 0, k = 0

1. If Df (xk) is regular, set

xk+1 = xk −Df (xk)
−1 f (xk)

2. Stop, if xk+1 − xk < εstop, otherwise set k → k + 1 and go to step 1.

Theorem 10.1.7. Let f ∈ C2 (U,Rn), x∗ ∈ U a root of f , s.t. Df (x∗) is
regular. Then there exists ε > 0 s.t. for all x0 ∈ Bε (x

∗) ∩ U the Newton
method is executable and it converges. For iterates (xk)k∈N0

we have

x∗ − xk+1 ≤ cx∗ − xk2

with constant c ≥ 0

Proof. Since det (Df (x∗)) ∕= 0, and x → det (Df (x)) is cont., we have ε̃ > 0
s.t. det (Df (x)) ∕= 0 and Df (x)−1  ≤ c1 ∀x ∈ Bε̃ (x

∗) ⊆ U .
Now assume xk ∈ Bε̃ (x

∗) for k ≥ 0. The Taylor expansion yields

0 = f (x∗) = f (xk) +Df (xk) (x
∗ − xk) + ϕ (x∗ − xk)

with ϕ : R → R,ϕ (t) ≤ c2t
2 for all |t| ≤ c3.

This now yields

f (xk)−Df (xk) (x
∗ − xk)  ≤ c2x∗ − xk2

Using the iteration, we get

x∗ − xk+1 = Df (xk)
−1 (f (xk) +Df (xk) (x

∗ − xk))
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so

x∗ − xk+1 = Df (xk)
−1 (f (xk) +Df (xk) (x

∗ − xk)) 
≤ Df (xk)

−1 f (xk) +Df (xk) (x
∗ − xk) 

≤ c1c2x∗ − xk2

Taking ε ≤ min


1
c1c2

, ε̃, 1
2


, we get as long as xk ∈ Bε (x

∗) that

x∗ − xk+1 ≤ c1c2εx∗ − xk ≤ ε ≤ ε̃

so xk+1 ∈ Bε̃ (x
∗). So the method is well defined and quadratically convergent

if x0 ∈ Bε (x
∗).

10.2 Gradient flows

Instead of finding roots, we want to find minimizers of g : U ⊆ Rn → R.
This is a related problem to root finding, as the minimizer will (assuming
regularity) be a critical point.

Algorithm 10.2.1 (Gradient descent method). Let g ∈ C1 (U) , x0 ∈ U, σ ∈
(0, 1) and εstop > 0.

1. Set dk = −∇g (xk) and find

max




ak ∈

2−l : l ∈ N0


: g (xk + αkdk) ≤ g (xk)− σαkdk2  

Armijo-condition




.

2. Set xk+1 = xk + αkdk

3. Stop, if αkdk ≤ εstop otherwise set k → k + 1 and got to Step 1.

Theorem 10.2.2. Let g ∈ C1 (U) x0 ∈ U, V ⊂⊂ U , convex, s.t.

Ṽ = {x ∈ U : g (x) ≤ g (x0)} ⊆ V.

Settting m = maxx∈V ∇g (x)  and W = {x+ s : x ∈ V, s ∈ Bm (0)} assume
then g ∈ C2


W


. Then for the iterates (xk)k∈N0

of the gradient method we
have

∇g (xk) → 0 as k → ∞ and αk > (1− σ)
1

γ
with γ = sup

x∈W
D2g (x) 
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Proof. The sequence (g (xk))k∈N0
is monotonically decreasing, therefore (xk)k∈N0

⊆
V and g (xk) ≥ −c0 = minx∈V g (x) for all k ∈ N0.
From the Armijo-condition, we have

g (x0) ≥ g (x1) + σα0∇g (x0) 2

≥ g (x2) + σα1∇g (x1) 2 + σα0∇g (x0) 2

≥ . . . ≥ g (xl+1) + σ
l

k=0

αk∇g (xk) 2 ≥ −c0 + σ
l

k=0

αk∇g (xk) 2

The sequence
l

k=0 αl∇g (xk) 2 is thus bounded and therefore
αk∇g (xk) 2 → 0.
We need to show that αk ≥ δ > 0 ∀k ∈ N0 and some δ > 0. Then we are
done.
For any k ∈ N0, we have that either αk = 1 or that the Armijo-condition is
violated for 2αk, which implies

2σαk∇g (xk) 2 > g (xk)− g (xk + 2αkdk)

The Taylor expansion implies that there exists ξ ∈ W s.t.

g (xk + 2αkdk) = g (xk) +∇g (xk) (2αkdk) +
1

2
(2αk)

2 dk, D2g (xk) dk


Using dk = −∇g (xk) and (dk, D
2g (xk) dk) ≤ γdk2 we have

2σαkdk2 > 2αkdk2 − 2γα2
kdk2

=⇒ (1− σ)αk < γα2
k

=⇒ αk > (1− σ)
1

γ

11 The Conjugate gradient method

11.1 Quadratic minimization

Let A ∈ Rn×n symmetric, pos. def. Then the solution x∗ ∈ Rn of Ax = b is
the unique minimizer of

φ (x) =
1

2
b− Ax2A−1 =

1

2
( A−1


also pos def, ...

(b− Ax)) (b− Ax) ≥ 0
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Taking a starting value x̃ ∈ Rn and a search direction d̃ ∈ Rn we can find a

new value x̃ + α̃d̃ by minimizing ψ̃ : t → φ

x̃+ td̃


. We have in our case

ψ̃ (t) = φ̃ (x̃)− t (b− Ax̃) d̃+ t2

2


Ad̃


· d̃, so the minimizer is α̃ = (b−Ax̃)·d̃

(Ad̃)·d̃
.

If d̃ = −∇φ (x̃) = b− Ax̃ then we get

x̃new = x̃+ α̃d̃ = x̃+ α̃ (b− Ax̃)

which is a step in the Richardson method.

Remark. One can show that xk − x∗A ≤

κ−1
κ+1

k x0 − x∗A with
κ = cond (A).

11.2 Conjugate gradients

Definition 11.2.1. x, y ∈ Rn are called A-conjugate, if (x,Ay) = 0.

Lemma 11.2.2. Let d0, d1, . . . , dk ∈ Rn \ {0} be pairwise A-conjugate, i.e.
di · (Adj) = 0 for i ∕= j. Take x0 ∈ Rn and set xj+1 as the minimizer of φ
from 11.1 in the direction of dj, i.e.

xj+1 = xj + αjdj = x0 +

j

l=0

αldl

with αj =
dj · (b− Axj−1)

dj · Adj
=

dj · (b− Ax0)

dj · Adj
for j = 1, . . . , k. Then xj+1 is the minimizer of φ in the set

x0 + span {d0, . . . , dj} .

Proof. Bunch of linear algebra, basically show that partial derivatives
∂

∂αj
φ

x0 +

j
l=0 αldl


= ψ′

i (αi) = 0.

To compute A-conj. search directions consider the residual rk = b− Axk

Lemma 11.2.3. For x0 ∈ Rn, r0 = b− Ax0, d0 = r0, we iteratively set

rk+1 = rk − αkAdk

dk+1 = rk+1 − βkdk

where αk =
dk · rk
dk · Adk

, βk =
dk · Ark+1

dk · Adk
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Then d0, . . . , dk are a set of non-zero A-conj vectors, until rk+1 = 0. The
Ksylov space Kk (A, r0) = span


r0, Ar0, . . . A

k−1r0

satisfies

Kk (A, r0) = span {d0, . . . , dk−1} = span {r0, . . . rk−1}

and rk is orthogonal to this space.

Proof. Longer computation.

This yiels

Algorithm 11.2.4 (CG-Method). Let A ∈ Rn×n symmetric, pos. def., b ∈
Rn, x0 ∈ Rn, εstop > 0. Set d0 = r0 = b− Ax0, k = 0.

1. Set xk+1 = xk + αkdk
rk+1 = rkAdk,
dk+1 = rk+1 − βkdk where

αk =
rk2
dk·Adk

, βk =
rk+12
rk2

2. Stop if rk+1 ≤ εstop, otherwise k → k + 1, go to 1.

Theorem 11.2.5. We get

x∗ − xkA ≤ 2

√
κ− 1√
κ+ 1

k

x∗ − xkA

where κ = cond (A).
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