Homework accompanying the lecture "Basics in Applied Mathematics"

Homework 6

Hand in: Tuesday, 26.11.2024, after the lecture in the mailbox at the Math Institut (Don't forget to put your name on your homework. Please hand in your solutions in groups of two.)

Exercise 1

(Cholesky decomposition ; 2 points)

Let (v_1, v_2, \ldots, v_n) be a basis of \mathbb{R}^n and let $V = [v_1|v_2| \ldots |v_n] \in \mathbb{R}^{n \times n}$.

- a) Show that $G := VV^T$ is symmetric and positive definite.
- b) Show that there exists a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ such that for W := LV the identity $W^T W = \text{Id holds.}$

Exercise 2

(Diagonally dominant matrices ; 2 points)

Let $A \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant matrix, i.e.

$$\sum_{j=1,\dots,n, \ j\neq i} |a_{ij}| < |a_{ii}|, \quad i = 1, 2, \dots, n.$$

- a) Show that the submatrices $A_k := (a_{ij}), 1 \le i, j \le k$, for k = 1, 2, ..., n are also strictly diagonally dominant.
- b) Show that the matrix A is regular (and with (1) of course also all its submatrices are regular).

<u>Hint:</u> To prove (2), show that the kernel of A is the null space.

Exercise 3

(Properties of the operator norm; 3 points)

Let $\|\cdot\|_n$ and $\|\cdot\|_m$ be norms on \mathbb{R}^n and \mathbb{R}^m respectively and let $\|\cdot\|_{\text{op}}$ be the induced operator norm on $\mathbb{R}^{m \times n}$. Show:

- a) $\|\cdot\|_{\text{op}}$ defines a norm on $\mathbb{R}^{m \times n}$.
- b) $||A||_{\text{op}} := \sup_{\{x \in \mathbb{R}^n : ||x||_n = 1\}} ||Ax||_m = \inf\{c > 0 : \forall x \in \mathbb{R}^n ||Ax||_m \le c ||x||_n\}.$
- c) For $A \neq 0$ and $x \in \mathbb{R}^n$ such that $||x||_n \leq 1$ and $||Ax||_m = ||A||_{\text{op}}$, it follows that $||x||_n = 1$.
- d) The infimum and the supremum in (2) are assumed.

Exercise 4

(The induced ℓ^p -matrix norms ; 3 points)

a) Let $A \in \mathbb{R}^{n \times n}$, $||x||_p$ be the ℓ^p -norm on \mathbb{R}^n and $||A||_p$ be the corresponding induced matrix norm on $A \in \mathbb{R}^{n \times n}$. Show that

$$||A||_2^2 \le ||A||_1 ||A||_{\infty}$$

holds.

b) Show that for every matrix $A \in \mathbb{R}^{n \times n}$ the estimates

$$n^{-1/2} \|A\|_2 \le \|A\|_1 \le n^{1/2} \|A\|_2$$
$$n^{-1} \|A\|_{\infty} \le \|A\|_1 \le n \|A\|_{\infty}$$

and give matrices $A \in \mathbb{R}^{n \times n}$ that show that the estimates cannot be improved (i.e., for each of these four inequalities and any $n \in \mathbb{N}$, find an A such that equality holds).

Programming exercise 5

(Stability; 2 points)

The function ϕ is defined by

$$\phi(x) = \frac{1}{x} - \frac{1}{x+1} = \frac{1}{x(x+1)}$$

and it is easy to show that ϕ is well conditioned for large values f x. ϕ can be implemented, for example, using the methods

$$\tilde{\phi}_1(x) = \left(\frac{1}{x}\right) - \left(\frac{1}{x+1}\right), \quad \tilde{\phi}_2 = \frac{1}{(x(x+1))},$$

where the brackets determine the order in which the operations are carried out. Calculate $\tilde{\phi}_1$ and $\tilde{\phi}_2$ for different large values of x and compare the results in tabular form/graphically. How would you describe the behavior of $\tilde{\phi}_1$?

Programming exercise 6

(Triangular matrix ; 3 points)

The solutions of linear systems of equations with regular lower and upper triangular matrices are given by the following algorithms for forward and backward substitution:

$$x_j = \frac{1}{u_{jj}} \left(b_j - \sum_{k=1}^{j-1} u_{jk} x_k \right), \qquad x_j = \frac{1}{l_{jj}} \left(b_j - \sum_{k=j+1}^n l_{jk} x_k \right).$$

Implement the above algorithms and test your procedures for the systems of equations $A_l x = b_l$, l = 1, 2, 3, with

$$A_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, b_{1} = \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}, b_{2} = \begin{pmatrix} 6 \\ 9 \\ 6 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}, b_{3} = \begin{pmatrix} 3 \\ 12 \\ 28 \end{pmatrix}$$

Programming exercise 7

(LU-factorization ; 3 points)

One can calculate the LU-factorization of a given LU-decomposable matrix $A = (a_{ij})$ using the following algorithm by Crout:

$$u_{ik} = a_{ik} - \sum_{j=1}^{i-1} l_{ij} u_{jk}, \quad l_{ki} = \left(a_{ki} - \sum_{j=1}^{i-1} l_{kj} u_{ji}\right) / u_{ii}.$$

Implement this algorithm to calculate the LU-decomposition of

$$A_1 = \left(\begin{array}{rrrr} 5 & 3 & 1\\ 10 & 8 & 8\\ 15 & 11 & 10 \end{array}\right)$$

and, for various very small values of $\epsilon,$ for

$$A_2 = \left(\begin{array}{cc} \epsilon & 1\\ 1 & 0 \end{array}\right).$$

Comment on the results.