Exercises for the lecture "Probability Theory I"

Sheet 6

Submission deadline: Thursday, 05.06.2025, until 10:15 o'clock in the mailbox in the math institute (You may deliver the exercise solutions in pairs.)

Exercise 1

(4 points)

(a) Let X, Y be two independent, uniformly on [0, 1] distributed random variables. Show that

$$\mathbb{E}[X|\max(X,Y)] = \frac{3}{4}\max(X,Y).$$

(b) Generalize the assertion of part (a) to $\mathbb{E}[X_1 | \max(X_1, \ldots, X_n)]$ for independent, uniformly on [0, 1] distributed random variables X_1, \ldots, X_n and prove this generalization.

Exercise 2

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and X a random variable that is exponentially distributed with parameter $\lambda > 0$. For t > 0 define $Y_t := \min\{X, t\}$. Prove that

$$\mathbb{E}[X|Y_t] = X \mathbb{1}_{\{X < t\}} + \left(t + \frac{1}{\lambda}\right) \mathbb{1}_{\{X \ge t\}}.$$

HINT: First, determine a family of sets that generates $\sigma(Y_t)$.

Exercise 3

(4 points)

(4 points)

Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a measurable function and X, Y two real-valued random variables satisfying $\mathbb{E}[|f(X,Y)|] < \infty$.

(a) Prove that $\mathbb{E}[f(X,Y)|Y=y] = \mathbb{E}[f(X,y)]$ for X and Y being independent.

(b) Find a counterexample for (a) for dependent X and Y.

Now, let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent identically distributed and integrable random variables and N a \mathbb{N}_0 -valued random variable that is independent of $(X_n)_{n \in \mathbb{N}}$ with $\mathbb{E}[N] < \infty$.

- (c) Determine $\mathbb{E}\left[\sum_{i=1}^{N} X_i \middle| N = n\right]$.
- (c) Prove that

$$\mathbb{E}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}[N]\mathbb{E}[X_1].$$

(please turn over)

Exercise 4

(4 points)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(X_n)_{n \in \mathbb{N}}$ a sequence of random variables that converges to X almost surely. Prove that for every $\varepsilon > 0$ there exists a set $A \in \mathcal{A}$ with $\mathbb{P}(A^c) < \varepsilon$ such that the convergence is uniform on A, i.e.

$$\sup_{\omega \in A} |X_n(\omega) - X(\omega)| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Exercises for self-monitoring

- (1) Define the conditional expectation based on conditional probability and vice versa.
- (2) List all properties of conditional expectation you are familiar with.
- (3) Prove linearity of conditional expectation.
- (4) Let $\mathcal{F} \subset \mathcal{G}$. Prove that $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{F}] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{F}]$ a.s.
- (5) Prove that $\mathbb{E}[X^2|\mathcal{F}] \ge \mathbb{E}[X|\mathcal{F}]^2$ a.s.
- (6) Formulate a monotone convergence result for conditional expectation.