Exercises for the lecture "Probability Theory I"

Sheet 1

Submission deadline: Friday, 02.05.2025, until 10:15 o'clock in the mailbox in the math institute

(You may deliver the exercise solutions in pairs.)

Exercise 1

(4 points)

(4 points)

(a) Prove that the Borel σ -algebra $\mathscr{B}(\mathbb{R})$ on \mathbb{R} , which by definition is the σ -algebra generated by all open sets, is generated by the open intervals, i.e.

$$\mathscr{B}(\mathbb{R}) = \sigma(\{(a, b) \mid a, b \in \mathbb{R}, \ a < b\}).$$

- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that f is $\mathscr{B}(\mathbb{R}) \mathscr{B}(\mathbb{R})$ -measurable.
- (c) For each $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a $\mathscr{B}(\overline{\mathbb{R}}) \mathscr{B}(\overline{\mathbb{R}})$ -measurable function. Prove that the pointwise defined functions $\sup_{n \in \mathbb{N}} f_n$ and $\limsup_{n \to \infty} f_n$ are again $\mathscr{B}(\overline{\mathbb{R}}) \mathscr{B}(\overline{\mathbb{R}})$ -measurable.

Exercise 2

(a) Let $\lambda > 0$ and μ be a measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ given by

$$\mu(\{n\}) = \frac{\lambda^n}{n!} e^{-\lambda} \quad \text{ for all } n \in \mathbb{N}.$$

Based on this, define $\mu(A)$ for an arbitrary set $A \subset \mathbb{N}$ and explain why μ is a well-defined measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Furthermore, calculate

$$\int_{\mathbb{N}} x \ d\mu(x).$$

(b) For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) := n \mathbb{1}_{(0,\frac{1}{n}]}(x)$. Find the pointwise limit of $(f_n)_{n \in \mathbb{N}}$ and derive

$$\lim_{n \to \infty} \int_0^1 f_n(x) d\lambda(x).$$

Is this a contradiction to the theorem of dominated convergence?

Exercise 3

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Moreover, \mathbb{P} and \mathbb{Q} are probability measures given by $\frac{d\mathbb{P}}{d\mu} = f$ and $\frac{d\mathbb{Q}}{d\mu} = g$. Prove that

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(A) - \mathbb{Q}(A)| = \frac{1}{2} \int_{\Omega} |f - g| d\mu.$$

HINT: Consider the set $\{\omega \in \Omega : f(\omega) \ge g(\omega)\}.$

(please turn over)

(4 points)

Exercise 4

(4 points)

Let λ, μ and ν be measure on some measurable space (Ω, \mathcal{A}) . Prove:

- (a) For $\lambda \ll \mu$ and $\mu \perp \nu$, we have $\lambda \perp \nu$.
- (b) If $\mu \ll \nu$ and $\mu \perp \nu$ simulaneously, then $\mu \equiv 0$.
- (c) If for all $\varepsilon > 0$ there exists $A \in \mathcal{A}$ such that $\mu(A) < \varepsilon$ and $\nu(A^c) < \varepsilon$, then $\mu \perp \nu$.

HINT: The required terms will be introduced on Monday.

Exercises for self-monitoring

- (1) Recall the definition of the pushforward measure and show that it is actually a measure.
- (2) Let μ be a probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ and F be given as

$$F(x) := \mu((-\infty, x]).$$

Argue that F is non-decreasing and right-continuous.

(3) Let F be a non-negative, non-decreasing and right-continuous function as in (2). For $a \leq b$, we define

$$\mu((a,b]) = F(b) - F(a).$$

Show that μ is a measure that is uniquely defined via F.

- (4) Formulate all convergence theorems that you know for the integral. Pay close attention to the respective conditions!
- (5) Denote by λ the Lebesgue measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Find examples for a probability measure which
 - (i) is singular with respect to λ .
 - (ii) is absolutely continuous with respect to λ , but the opposite does not hold.
 - (iii) is equivalent to λ .
 - (iv) has both an absolutely continuous and a singular part (w.r.t. λ).