Albert-Ludwigs-Universität Freiburg

Lecture notes

Probability Theory I

Angelika Rohde

Summer semester 2025

Contents

1	A short repetition of Measure Theory		
	1.1	σ -Algebras and measures	1
	1.2	Measurable maps and measure integral	4
	1.3	Product spaces	$\overline{7}$

1 A short repetition of Measure Theory

This chapter contains a brief summary (without proofs) of the measure theoretic foundations as already known from our Analysis III course.

1.1 σ -Algebras and measures

Definition 1.1. Let $\Omega \neq \emptyset$. A system \mathscr{A} of subsets of Ω is called σ -algebra if

- (i) $\Omega \in \mathscr{A}$,
- $(ii) \ A \in \mathscr{A} \implies A^c \in \mathscr{A},$
- (*iii*) $A_n \in \mathscr{A} \ \forall n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathscr{A}.$

 \mathscr{A} is called algebra if only (iii') instead of (iii) is granted:

$$A, B \in \mathscr{A} \implies A \cup B \in \mathscr{A}.$$

Lemma 1.2. Let $\Omega \neq \emptyset$ be a set and \mathscr{A} a σ -algebra over Ω . Then the following statements hold true:

- (i) $A_n \in \mathscr{A} \ \forall n \in \mathbb{N} \implies \bigcap_{n \in \mathbb{N}} A_n \in \mathscr{A}$
- $(ii) \ A,B \in \mathscr{A} \implies A \setminus B \in \mathscr{A}.$

Remark. The pair (Ω, \mathscr{A}) with a σ -algebra \mathscr{A} over Ω is is called measurable space.

Arbitrary intersections of σ -algebras over Ω are σ -algebras over Ω again. For any systems \mathcal{E} of subsets of Ω , there exists a smallest σ -algebra $\sigma(\mathcal{E})$ with $\mathcal{E} \subset \sigma(\mathcal{E})$, namely the intersection of all those which contain \mathcal{E} .

Definition 1.3. If Ω is equipped with a topology, then the σ -algebra generated by the open subsets of Ω is called Borel- σ -algebra.

Definition 1.4. Let (Ω, \mathscr{A}) be a measurable space. A map $\mu : \mathscr{A} \to [0, \infty]$ with $\mu(\emptyset) = 0$ is called measure if it is σ -additive, meaning that

$$A_n \in \mathscr{A} \ \forall n \in \mathbb{N}, \ A_i \cap A_j = \varnothing \ \forall i \neq j \implies \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n).$$

The triple $(\Omega, \mathscr{A}, \mu)$ is called <u>measure space</u>. If $\mu(\Omega) = 1$, then μ is named <u>probability</u> <u>measure</u> and $(\Omega, \mathscr{A}, \mu)$ correspondingly <u>probability space</u>. A measure μ is called <u>finite</u> if $\mu(\Omega) < \infty$. It is named <u> σ -finite</u> if there exist sets $\Omega_i \in \mathscr{A} \ \forall i \in \mathbb{N}$ such that $\mu(\Omega_i) < \infty$ $\forall i \in \mathbb{N} \ and \ \Omega = \bigcup_{i \in \mathbb{N}} \Omega_i$. **Notation.** The following notations are occasionally used variants of " $A \cup B$ ", but also convey the information that the sets A and B are disjoint:

$$A \stackrel{.}{\cup} B, A + B.$$

Lemma 1.5. Let (Ω, \mathscr{A}) be a measurable space, μ a measure on (Ω, \mathscr{A}) , $A, B, A_n \in \mathscr{A}$ $\forall n \in N$. Then the following statements are satisfied:

- (i) $A \subset B \implies \mu(A) + \mu(B \setminus A) = \mu(B)$. In particular, $A \subset B \implies \mu(A) \le \mu(B)$ (monotonicity).
- (ii) $\mu(A \cap B) + \mu(A \cup B) = \mu(A) + \mu(B)$. In particular, $\mu(A \cup B) \le \mu(A) + \mu(B)$ (subadditivity).
- (iii) If $A_n \subset A_{n+1} \ \forall n \in \mathbb{N}$, then the continuity from below holds:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lim_{n\to\infty}\mu(A_n).$$

(iv) If $A_{n+1} \subset A_n \ \forall n \in \mathbb{N}$ and $\mu(A_1) < \infty$, then the continuity from above holds:

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right) = \lim_{n\to\infty}\mu(A_n).$$

We now pose the question under which conditions an additive functional (uniquely) extends to a measure.

Theorem 1.6 (Carathéodory's existence and uniqueness theorem). Let \mathscr{A} be a system of subsets of Ω with the following properties:

- (i) $\Omega \in \mathscr{A}$,
- (ii) $A, B \in \mathscr{A} \implies B \setminus A$ is a finite disjoint union of sets of \mathscr{A} ,
- $(iii) A, B \in \mathscr{A} \implies A \cap B \in \mathscr{A}.$

[Such a system of subsets of Ω is called <u>half ring</u>.] Let $\mu : \mathscr{A} \to [0, \infty]$ be a function with the following properties:

- $(iv) \ \mu(\varnothing) = 0,$
- (v) $A, B \in \mathscr{A}$ with $A \cup B \in \mathscr{A}$ and $A \cap B = \mathscr{A} \implies \mu(A \cup B) = \mu(A) + \mu(B)$ (additivity),
- (vi) There exist $\Omega_i \in \mathscr{A}$ with $\mu(\Omega_i) < \infty$ and $\Omega_i \subset \Omega_{i+1} \ \forall i \in \mathbb{N}$ such that $\bigcup_{i \in \mathbb{N}} \Omega_i = \Omega$.

(vii) $A, A_n \in \mathscr{A} \ \forall n \in \mathbb{N}$ with $A \subset \bigcup_{n \in \mathbb{N}} A_n$

$$\implies \mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n).$$

Then there exists a unique extension of μ to a measure on $\sigma(\mathscr{A})$.

Remark. The system of sets

$$\{(a,b] \cap \mathbb{R} \mid a,b \in \mathbb{R} \cup \{-\infty,+\infty\}, a \le b\}$$

satisfies the conditions (i)-(iii).

Remark. A probability measure μ is uniquely described by its values on a \cap -stable generator \mathscr{E} of the σ -algebra.

Proof. As μ is normed (i.e. $\mu(\Omega) = 1$) and additive, these values provide all the values on

$$\mathscr{E}' = \left\{ \bigcap_{i=1}^{K} A_i \mid A_i \text{ or } A_i^c \in \mathscr{E} \ \forall \, i \leq K, K \in \mathbb{N} \right\}.$$

The set \mathscr{E}' satisfies (*i*)-(*iii*):

- (i) We can assume that $\emptyset \in \mathscr{E}$, as the goal is to describe μ by its values on \mathscr{E} , and we already know that $\mu(\emptyset) = 0$. Using K = 1 and $A_1 = \Omega$ (which is valid, as $\Omega^c = \emptyset \in \mathscr{E}$), $\Omega \in \mathscr{E}'$ follows from the definition of \mathscr{E}' .
- (*ii*) Let $A = \bigcap_{i=1}^{K} A_i, B = \bigcap_{j=1}^{L} B_j \in \mathscr{E}'.$ $\implies B \setminus A = B \cap A^c = \left(\bigcap_{j=1}^{L} B_j\right) \cap \left(\bigcup_{i=1}^{K} A_i^c\right) = \bigcup_{i=1}^{K} \underbrace{\left(A_i^c \cap \bigcap_{j=1}^{L} B_j\right)}_{\in \mathscr{E}'}$ (*iii*) Let $A = O^K$, $A = B \cap Q^L$, $B \in \mathscr{A}'$.

(iii) Let $A = \bigcap_{i=1}^{K} A_i, B = \bigcap_{j=1}^{L} B_j \in \mathscr{E}'$. Then,

$$A \cap B = \bigcap_{i=1}^{K} \bigcap_{j=1}^{L} (A_i \cap B_j)$$

is a finite intersection of subsets of Ω such that for every set, the set itself or its complement is in \mathscr{E} ; hence, $A \cap B \in \mathscr{E}'$.

Therefore, the claim follows from Theorem 1.6.

1.2 Measurable maps and measure integral

Definition 1.7. Let $(\Omega, \mathscr{A}), (\Omega', \mathscr{A}')$ be measurable spaces. A map $f : \Omega \to \Omega'$ is called measurable (or \mathscr{A} - \mathscr{A}' -measurable) if

$$f^{-1}(A') \in \mathscr{A} \ \forall A' \in \mathscr{A}'$$

where $f^{-1}(A') := \{ \omega \in \Omega \mid f(\omega) \in A' \}.$

Lemma 1.8. Let $(\Omega, \mathscr{A}), (\Omega', \mathscr{A}')$ be measurable spaces and $\mathscr{E} \subset \mathscr{A}'$ with $\sigma(\mathscr{E}) = \mathscr{A}'$ (meaning \mathscr{E} is a generator of \mathscr{A}'). Then:

$$f^{-1}(E') \in \mathscr{A} \,\,\forall E' \in \mathscr{E}' \iff f^{-1}(A') \in \mathscr{A} \,\,\forall A' \in \mathscr{A}'$$

This means that it is sufficient to check measurability on a generator of the σ -algebra.

Notation. For the sake of readability, we define $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ and

$$\mathscr{B}(\overline{\mathbb{R}}) = \{ B \subset \mathbb{R} \mid B \cap \mathbb{R} \in \mathscr{B}(\mathbb{R}) \} = \{ B \cup E \mid B \in \mathscr{B}(\mathbb{R}), E \subset \{ -\infty, +\infty \} \}.$$

Proposition 1.9. Let (Ω, \mathscr{A}) be a measurable space and $f_n : \Omega \to \overline{\mathbb{R}}$ an \mathscr{A} - $\mathscr{B}(\overline{\mathbb{R}})$ measurable function $\forall n \in \mathbb{N}$. Then, the functions

$$\inf_{n \in \mathbb{N}} f_n, \ \sup_{n \in \mathbb{N}} f_n, \ \liminf_{n \to \infty} f_n, \ \limsup_{n \to \infty} f_n$$

are also \mathscr{A} - $\mathscr{B}(\overline{\mathbb{R}})$ -measurable.

Monotone limits play a crucial role for the construction of the measure integral.

Definition 1.10. Let $A \subset \Omega$. The function

$$\mathbb{1}_A: \Omega \to \{0,1\}, \ \omega \mapsto \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

is called <u>indicator function</u>. If $A_k \in \mathscr{A}$ and $c_k \in \mathbb{R} \ \forall k \in \{1, \ldots, n\}$ for some $n \in \mathbb{N}$, then $\sum_{k=1}^n c_k \mathbb{1}_{A_k}$ is called $\underline{\mathscr{A}}$ -elementary function.

Measure integral for elementary functions

Let f be an elementary function, i.e. $f = \sum_{k=1}^{n} c_k \mathbb{1}_{A_k}$ with measurable sets $A_k \subset \Omega$. Then the elementary integral is defined as

$$\int f \, \mathrm{d}\mu := \sum_{k=1}^n c_k \mu(A_k)$$

If there is an alternative representation $f = \sum_{k=1}^{n'} c'_k \mathbb{1}_{A'_k}$, one can easily prove that

$$\sum_{k=1}^{n} c_k \mu(A_k) = \sum_{k=1}^{n'} c'_k \mu(A'_k).$$

Hence, this integral is well-defined.

Lemma 1.11. Let (Ω, \mathscr{A}) be a measurable space and $f : \Omega \to \mathbb{R}$ an \mathscr{A} - $\mathscr{B}(\mathbb{R})$ -measurable function with $f \geq 0$. Then the following statements hold true.

- (i) There exists a sequence $(f_n)_{n \in \mathbb{N}}$ of elementary functions with $f_n \leq f_{n+1} \ \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} f_n = f$.
- (ii) There exist sets $A_k \in \mathscr{A} \ \forall n \in \mathbb{N}$ and a sequence $(c_k)_{k \in \mathbb{N}}$ of non-negative real numbers such that $f = \sum_{k \in \mathbb{N}} c_k \mathbb{1}_{A_k}$.

That is: Any measurable function $f \ge 0$ is the monotone limit of elementary functions $f_n \nearrow f$.

The crucial idea is to define the integral for general non-negative, measurable functions f by monotone approximation: For non-negative elementary functions $f_n \nearrow f$,

$$\int_{\substack{\uparrow\\ = \lim_{n \to \infty} f_n}} f \, \mathrm{d}\mu := \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int f_n \, \mathrm{d}\mu$$

To ensure that this integral is well-defined, we have to verify that

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu$$

if g_n is another sequence of elementary functions with $g_n \nearrow f$. This is the content of the next lemma.

Lemma 1.12. Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and $f : \Omega \to \mathbb{R}$ a measurable, bounded function with $f \geq 0$. If

$$f = \sum_{n=1}^{\infty} \alpha_n \mathbb{1}_{A_n} = \sum_{n=1}^{\infty} \beta_n \mathbb{1}_{B_n}$$

with constants $\alpha_n, \beta_n > 0 \ \forall n \in \mathbb{N}$, then

$$\sum_{n \in \mathbb{N}} \alpha_n \mu(A_n) = \sum_{n \in \mathbb{N}} \beta_n \mu(B_n).$$

We summarize the important findings and state formally the definition.

Definition 1.13. Let $f \ge 0$ be a non-negative measurable function. By Lemma 1.11, f is the monotone limit of non-negative elementary functions $f_n = \sum_{k=1}^n c_k \mathbb{1}_{A_k}$, that is $f = \sum_{n \in \mathbb{N}} c_k \mathbb{1}_{A_k}$, and we define

$$\int f \, \mathrm{d}\mu := \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} c_n \mu(A_n).$$

By Lemma 1.12, this integral is well-defined.

A measurable (not necessarily non-negative) function $f : \Omega \to \mathbb{R}$ is called <u>(finitely)</u> <u>integrable</u> if $f^+ := f \cdot \mathbb{1}_{\{f \ge 0\}}$ and $f^- := -f \cdot \mathbb{1}_{\{f < 0\}}$ are integrable, i.e.

$$\int f^+ \, \mathrm{d}\mu < \infty \text{ and } \int f^- \, \mathrm{d}\mu < \infty.$$

This is the case if and only if $\int |f| d\mu < \infty$ (which we call <u>absolute integrability</u>). In this case, we define

$$\int f \, \mathrm{d}\mu := \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu.$$

Lemma 1.14 (Properties of the integral). (i) The integral is linear on the finitely integrable functions, i.e.

$$\int (\alpha f + \beta g) \, \mathrm{d}\mu = \alpha \int f \, \mathrm{d}\mu + \beta \int g \, \mathrm{d}\mu$$

for all finitely integrable functions f, g and $\alpha, \beta \in \mathbb{R}$.

(ii) The integral is monotone, i.e.

$$g \leq f \implies \int g \, \mathrm{d}\mu \leq \int f \, \mathrm{d}\mu$$

for all integrable functions f, g.

(iii) <u>Theorem of monotone convergence</u>: If $(f_n)_{n \in \mathbb{N}}$ is a sequence of finitely integrable or non-negative measurable functions with $f_n \leq f_{n+1} \ \forall n \in \mathbb{N}$, then

$$\int \lim_{n \to \infty} f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

(iv) <u>Theorem of dominated convergence</u>: If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions with $|f_n| \leq f \ \forall n \in \mathbb{N}$ for some function f with $\int f \ d\mu < \infty$, such that the pointwise limit $g := \lim_{n \to \infty} f_n$ exists, then

$$\int g \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

(v) <u>Fatou's Lemma</u>: If f, f_n are finitely integrable and $f \leq f_n \, \forall n \in \mathbb{N}$, then the function $\liminf_{n\to\infty} f_n$ is finitely integrable, and

$$\liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu \ge \int \liminf_{n \to \infty} f_n \, \mathrm{d}\mu.$$

1.3 Product spaces

Definition 1.15. Let I be an arbitrary index set and $(\Omega_i)_{i \in I}$ a family of sets. We define

$$\Omega = \prod_{i \in I} \Omega_i := \bigg\{ \omega : I \to \bigcup_{i \in I} \Omega_i \ \bigg| \ \omega(i) \in \Omega_i \ \forall i \in I \bigg\}.$$

Its elements ω are sometimes written as $\omega = (\omega_i)_{i \in I}$. Let $\pi_i : \Omega \to \Omega_i, \omega \mapsto \omega_i$ be the coordinate map (i.e. the projection onto the *i*-th coordinate).

Definition 1.16. Let $(\Omega_i, \mathscr{A}_i)$ be a measurable space for every $i \in I$. The smallest σ algebra over Ω with respect to which the function π_i is measurable $\forall i \in I$ is called the product- σ -algebra. This means that the product- σ -algebra is

$$\bigotimes_{i \in I} \mathscr{A}_i := \sigma \left(\pi_i^{-1}(A_i) \mid A_i \in \mathscr{A}_i \; \forall \, i \in I \right).$$

Theorem 1.17. Let $(\Omega_i, \mathscr{A}_i, \mu_i)$ be σ -finite measure spaces $\forall i \in \{1, \ldots, n\}$ for some $n \in \mathbb{N}$. Then there exists a unique σ -finite measure $\bigotimes_{i=1}^n \mu_i$ on the product space

$$\left(\prod_{i=1}^n \Omega_i, \bigotimes_{i=1}^n \mathscr{A}_i\right)$$

with the property

$$\left(\bigotimes_{i=1}^{n} \mu_i\right) (A_1 \times \ldots \times A_n) = \prod_{i=1}^{n} \mu_i(A_i)$$

for all sets $A_i \in \mathscr{A}_i \ \forall i \in \{1, \ldots, n\}$. We call this measure the product measure.

Example. Let $\Omega_1 = \mathbb{R} = \Omega_2$, $\mathscr{A}_1 = \mathscr{B}(\mathbb{R}) = \mathscr{A}_2$, $\mu_1 = \lambda = \mu_2$. Then the product measure λ^2 satisfies $\lambda^2([a_1, b_1] \times [a_2, b_2]) = \lambda([a_1, b_1]) \cdot \lambda([a_2, b_2])$.

One nice property of the integral with respect to product measures is that it can be iteratively boiled down to integrals over the marginals.

Theorem 1.18 (Fubini). Let $(\Omega_1, \mathscr{A}_1, \mu_1)$ and $(\Omega_2, \mathscr{A}_2, \mu_2)$ be σ -finite measure spaces and $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ a $(\mathscr{A}_1 \otimes \mathscr{A}_2)$ - $\mathscr{B}(\mathbb{R})$ -measurable function. If f is non-negative or absolutely integrable, then the maps

$$\Omega_1 \to \overline{\mathbb{R}}, \omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) \, \mathrm{d}\mu_2(\omega_2) \quad and \quad \Omega_2 \to \overline{\mathbb{R}}, \omega_2 \mapsto \int_{\Omega_1} f(\omega_1, \omega_2) \, \mathrm{d}\mu_1(\omega_1)$$

are measurable, and

$$\int_{\Omega} f \, \mathrm{d}\mu = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \, \mathrm{d}\mu_2(\omega_2) \right) \, \mathrm{d}\mu_1(\omega_1)$$
$$= \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) \, \mathrm{d}\mu_1(\omega_1) \right) \, \mathrm{d}\mu_2(\omega_2)$$

Definition 1.19. A topological space is called <u>Polish</u>, if there exists a complete metric inducing its topology and a countable base of the topology.

Example. A well-known example of a Polish space is the set of all continuous functions on the unit interval, C([0, 1]), equipped with the topology of uniform convergence:

$$d_{\sup}: \mathcal{C}([0,1]) \times \mathcal{C}([0,1]) \to \mathbb{R}, \ (f,g) \mapsto ||f-g||_{\infty} = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Proposition 1.20 (Ulam's lemma). Let (Ω, τ) be a Polish space and $\mathscr{B}(\Omega)$ the Borel- σ -algebra on this topological space. Let μ be a probability measure on $(\Omega, \mathscr{B}(\Omega))$. Let $E \in \mathscr{B}(\Omega)$ and $\varepsilon > 0$. Then there exists a compact set $K \subset E$ with $\mu(E \setminus K) < \varepsilon$.

Definition 1.21. Let I be an index set, $(\Omega_i, \mathscr{A}_i)$ a measurable space for every $i \in I$ and

$$(\Omega, \mathscr{A}) := \left(\prod_{i \in I} \Omega_i, \bigotimes_{i \in I} \mathscr{A}_i\right)$$

A family of probability measures $\{\mu_J \mid J \subset I \text{ is finite}\}$ on

$$(\Omega_J, \mathscr{A}_J) := \left(\prod_{i \in J} \Omega_i, \bigotimes_{i \in J} \mathscr{A}_i\right)$$

is called projective family if for every finite set $J \subset I$ and every $K \subset J$, we have

$$\mu_K = \mu_J^{\pi_K^J},$$

where $\pi_K^J: \Omega_J \to \Omega_K$, $(\omega_i)_{i \in J} \mapsto (\omega_i)_{i \in K}$ is the coordinate projection from Ω_J to Ω_K , and $\mu_J^{\pi_K^J}$ is the image measure of μ_J under π_K^J , meaning $\mu_J^{\pi_K^J}(A) = \mu_J((\pi_K^J)^{-1}(A))$ $\forall A \in \mathscr{A}_K.$