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Our goal today

Backpropagation

Regularization
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Forward propagation

In a feedforward neural network to produce an output ŷ from an input x
information flows forward through the network
This is called forward propagation
During training, forward propagation produces a scalar cost J(θ)
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Forward propagation algorithm for a typical deep neural net

Require: Network depth, l

Require: W (i) , i ∈ {1, ..., l} , the weight matrices of the model
Require: b(i) , i ∈ {1, ..., l} , the bias parameters of the model
Require: x, the input to process
Require: y, the target output
set h(0) = x
for k = 1, . . . , l do:

a(k) = b(k)+W (k)h(k−1)

h(k) = f (a(k))

at the end of the loop set:
ŷ = h(l)

J(θ) = L(ŷ,y)+λΩ(θ) ,where θ is (W (i),b(i)) i ∈ {1, ..., l}
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Backpropagation

The back-propagation algorithm allows the information from the cost to
flow backwards through the network, in order to compute the gradient

The term back-propagation is not the whole learning algorithm
Back-propagation is only a method to compute the gradient
Another algorithm, e.g. stochastic gradient descent, is used to perform
learning using this gradient.
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Computing an analytical expression for the gradient is straightforward
Numerically evaluating such an expression can be computationally
expensive
The back-propagation algorithm does so using a simple and inexpensive
procedure, that relates to the chain rule.

Figure from Goodfellow 2016
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Backward propagation algorithm for a typical deep neural net

this is Algorithm 6.4 in Goodfellow 2016
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The gradients on weights and biases can be used for a stochastic
gradient update
Symbol-to-number differentiation (Torch, Caffe): Use a set of numerical
values for the inputs and return a set of numerical values describing the
gradient at those input values
Symbol-to-symbol differentiation (Theano,Tensorflow): Add additional
nodes to the graph that provide a symbolic description of the desired
derivatives.
Because the derivatives are just another computational graph, it is
possible to run back-propagation again, to obtain higher derivatives.
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Figure from Goodfellow 2016
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Regularization in Neural Networks

regularization is a way to overcome underfitting, overfitting issues by
trading variance of the prediction error against bias.
E[L(ŷ,y)] = Irreducible Error+Bias2 +Variance (excercise)
regularization is a modification to a learning algorithm that is intended to
reduce its generalization error but not its training error.
we have already seen bagging as a regularization method
In the context of deep learning, most regularization strategies are based
on regularizing estimators, by adding a parameter norm penalty Ω(θ) to J

J(θ ;X ,y)+λΩ(θ)
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weight decay

weight decay refers to the L2 penalty.
also known as ridge regression
if we do not punish the bias b the objective function for weight decay is
given by

J̃(w;X ,y) =
λ

2
wT w+ J(w;X ,y)

this means in a single gradient update step the update changes to

w← (1− ελ )w− ε∇wJ(w;X ,y)

the addition of the weight decay term has modified the learning rule to
shrink the weight vector on each step
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we make a quadratic approximation to the objective function in the
neighborhood of the value w∗, the optimal weights where unregularized
training cost is minimal

Ĵ(w) = J(w∗)+
1
2
(w−w∗)T H(w−w∗)

where H is the Hessian matrix of J with respect to w evaluated at w∗

the minimum of the regularized version of J̃ is at

w̃ = (H +λ I)−1Hw∗

If we decompose H = QΛQT into a diagonal matrix Λ and an
orthonormal basis of eigenvectors Q we get

w̃ = Q(Λ+λ I)−1
ΛQT w∗
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Figure from Goodfellow 2016
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In comparison to L2 regularization, L1 regularization results in a solution
that is more sparse.
Sparsity in this context refers to the fact that some weights have an
optimal value of zero.
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Let us have a look at the learning procedure at playground.tensorflow.org
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