
Artificial Intelligence

Albert-Ludwigs-Universität Freiburg

Thorsten Schmidt
Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de
thorsten.schmidt@stochastik.uni-freiburg.de
SS 2017

Our goal today

Understand Support Vector Machines on a deeper level !

Support vector machines
The statistical classification problem

Support Vector Classifier
The kernel trick

A short excursion to convex optimization
The kernel trick
Reproducing kernel Hilbert spaces

Kernel examples
MNIST - data: an example

SS 2017 Thorsten Schmidt – Artificial Intelligence 46 / 89

Literature (incomplete, but growing):
Ian Goodfellow, Yoshua Bengio und Aaron Courville (2016). Deep
Learning. http://www.deeplearningbook.org. MIT Press
D. Barber (2012). Bayesian Reasoning and Machine Learning.
Cambridge University Press
Richard S. Sutton und Andrew G. Barto (1998). Reinforcement
Learning : An Introduction. MIT Press
Gareth James u. a. (2014). An Introduction to Statistical Learning:
With Applications in R. Springer Publishing Company, Incorporated.
isbn: 1461471370, 9781461471370
T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York
Inc. url: https://statweb.stanford.edu/~tibs/ElemStatLearn/

SS 2017 Thorsten Schmidt – Artificial Intelligence 47 / 89

http://www.deeplearningbook.org
https://statweb.stanford.edu/~tibs/ElemStatLearn/

Support vector machines

The first example of a tool we visit but which is not typical for classical
statistics is Support Vector Machines.
For the introduction we mainly follow Hastie et. al. (2009) and Steinwart
& Covel1.

1I. Steinwart und C. Scovel (2007). „Fast rates for support vector machines using Gaussian
kernels“. In: Ann. Statist. 35.2, S. 575–607.
SS 2017 Thorsten Schmidt – Artificial Intelligence 48 / 89

We start by formally introducing the statistical classification problem.
We have a finite training set

T = ((x1,y1), . . . ,(xn,yn)) ∈ (X×Y)n,

where X ⊂ Rd and Y = {−1,1}.
The standard batch model assumes that the samples (xi,yi)1≤i≤n are
i.i.d. according to an unknown probability measure P on X×Y .
Furthermore, a new sample (x,y) is drawn from P independently of T .
A classifier C assigns to every T a measurable function f = fT : X → R.
The prediction of C for y is

sign f (x)

with the convention sign(0) := 1.
We measure the quality of the classification f by the classification risk

R(f) := P({(x,y) : sign f (x) 6= y}).

SS 2017 Thorsten Schmidt – Artificial Intelligence 49 / 89

Clearly, it is the goal to achieve the smallest possible risk, the so-called
Bayes risk

RP := inf{R(f)| f : X → R measurable}.
A function which attains this level is called a Bayes decision function.
Let us start with an illustrative introduction to SVM (Pictures taken from
Hastie et.al. (2009))

SS 2017 Thorsten Schmidt – Artificial Intelligence 50 / 89

Consider the hyperplane described by
x>β + β0 = 0, with ‖ β ‖= 1 and the
classification G :

sign(x>β +β0).

The maximal margin is obtained by
the following optimization problem

max
β ,β0:‖β‖=1

M

subject to yi(x>i β +β0)≥M, i = 1, . . . ,n

SS 2017 Thorsten Schmidt – Artificial Intelligence 51 / 89

Such classifiers, computing a linear combination of the input and
returning the sign were called perceptrons in the late 1950s
(Rosenblatt, 1958) and set the foundations for later models of neural
networks in the 80s and the 90s.
We reformulate this criterion as follows: first, we get rid of ‖ β ‖= 1 by
considering

1
‖ β ′ ‖

yi(x>i β
′+β

′
0)≥M

or, equivalently
yi(x>i β

′+β
′
0)≥M‖ β

′ ‖.
With β ′,β ′0 satisfying these equations, any (positive) multiple will also
satisfy these, we rescale to ‖ β ′ ‖= M−1 and arrive at

min
β ,β0

1
2
‖ β ‖2

subject to yi(x>i β +β0)≥ 1, i = 1, . . . ,n.
(1)

This is a convex optimization problem and can be solved via the
classical Karush-Kuhn-Tucker conditions.
It should be noted that the solution does only depend on a small amount
of the data, and hence has a certain kind of robustness. On the other
side, it will possibly not be optimal under additional information on the
underlying distribution.

SS 2017 Thorsten Schmidt – Artificial Intelligence 52 / 89

Non-linearly separable data

When the data does not separate fully we will allow some points to be on
the wrong side.
In this regard, define the slack variables ξ1, . . . ,ξn and consider

yi(x>i β +β0)≥M−ξi (2)
or

yi(x>i β +β0)≥M(1−ξi) (3)

with ξi ≥ 0, ∑ξi ≤ K with a constant K.
The first conditions seems more natural, while the second choice
measures the overlap in relative distance, which chances with the width
of the margin, M. However, (2) leads to a non-convex optimization
problem. The second problem is convex and is the ”standard” support
vector classifier.

SS 2017 Thorsten Schmidt – Artificial Intelligence 53 / 89

The case for data which is not fully
linearly separable.
Misclassification occurs when ξi > 1.

SS 2017 Thorsten Schmidt – Artificial Intelligence 54 / 89

Summarizing we arrive at the following minimization problem (again
choosing ‖ β ‖= M−1) for the support vector classifier.

min ‖ β ‖ subject to
{

yi(x>i β +β0)≥ (1−ξi),∀i
ξi ≥ 0,∑ξi ≤ K.

For a detailed description we will revisit the Properties from Jungnickel
(2014) in the following. Beforehand we illustrate the SVM with a small R
example.

SS 2017 Thorsten Schmidt – Artificial Intelligence 55 / 89

A toy example

The classical statistical example is to consider two groups of normal
distributions with different mean.

Consider (Xi,Yi) which are standard normal in group one and normal
with mean (1,1) but same (identity) covariance matrix.
The example is taken from Chapter 9 of James et al. (2013)

SS 2017 Thorsten Schmidt – Artificial Intelligence 56 / 89

library(e1071)
% N=20
% x=matrix(rnorm(N*2), ncol=2) # data - x corresponds to 2-dimensional data
% y=c(rep(-1,N/2), rep(1,N/2)) # data - y has the classifier
% x[y==1,]=x[y==1,] + 1 # We shift the mean for the second class by (1,1)
% plot(x, col=(3-y))

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2

−
2

−
1

0
1

2

x[,1]

x[
,2

]

SS 2017 Thorsten Schmidt – Artificial Intelligence 57 / 89

dat = data.frame(x=x, y=as.factor(y))
svmfit = svm(y ~ ., data=dat, kernel="linear", cost=10, scale=FALSE)

svmfit$index # Identities of the support vectors
summary(svmfit) # Summary
plot(svmfit,dat,color = terrain.colors) # Plot

This small code fits a linear SVM with cost factor 10 to the data.
Its output is the number and identities of the support vectors
(unfortunately not the classification rule)

SS 2017 Thorsten Schmidt – Artificial Intelligence 58 / 89

−
1

1

−2 −1 0 1 2

−1

0

1

2

o

o

o

oo

o

o

o

o

x

x

x

xx

x

x

x

x

x

x

SVM classification plot

x.2

x.
1

The summary plot: red / black decode the classes and the crosses are the
support vectors. Note that we have four misclassifications.
SS 2017 Thorsten Schmidt – Artificial Intelligence 59 / 89

−
1

1

−2 −1 0 1 2

−1

0

1

2

o o

o

o

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

SVM classification plot

x.2

x.
1

A smaller parameter C leads to more misclassfications. What could be an
optimal choice ?
SS 2017 Thorsten Schmidt – Artificial Intelligence 60 / 89

The library provides a connection to cross-validation for the choice of
parameters.
tune.out=tune(svm,y ~.,data=dat,kernel="linear",ranges=list(

cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
summary(tune.out)

#Parameter tuning of ‘svm’:
#- sampling method: 10-fold cross validation
#- best parameters:
cost
0.1
#- Detailed performance results:
cost error dispersion
#1 1e-03 0.65 0.3374743
#2 1e-02 0.65 0.3374743
#3 1e-01 0.05 0.1581139
#4 1e+00 0.10 0.2108185
#5 5e+00 0.15 0.2415229
#6 1e+01 0.15 0.2415229
#7 1e+02 0.15 0.2415229

SS 2017 Thorsten Schmidt – Artificial Intelligence 61 / 89

The kernel trick

It seems quite restrictive to consider only linear classification rules. We
have already seen that in linear regression we were able to overcome
this problem by a suitable transformation of the data. This can also be
achieved here and is often called the kernel trick.
We first give a rather informative introduction and thereafter discuss the
mathematical properties.

SS 2017 Thorsten Schmidt – Artificial Intelligence 62 / 89

A short excursion to convex optimization

We follow Jungnickel2. Consider the linear optimization problem, also
called linear programm

min 3x1 +5x2

subject to 2x1 + x2 ≥ 3 (1)
2x1 +2x2 ≥ 5 (2)
x1 +4x2 ≥ 4 (3)
x1 ≥ 0 (4)
x2 ≥ 0 (5)

We illustrate the setting in the following picture. Besides this, we plot the
target function.

3x1 +5x2 = 19.

2D. Jungnickel (2014). Optimierungsmethoden: Eine Einführung. Springer-Verlag.
SS 2017 Thorsten Schmidt – Artificial Intelligence 63 / 89

The optimal solution can be found by moving 3x1 +5x2 = 19 towards the origin
(0,0).

SS 2017 Thorsten Schmidt – Artificial Intelligence 64 / 89

We realize that the optimal solution will be on one of the intersection
points (this important observation leads to the Simplex algorithm)
The optimal solution is x∗ = (2,0.5) representing 3x1 +5x2 = 8.5

As we obtained this geometrically, are we able to prove that this solution
is optimal ?

SS 2017 Thorsten Schmidt – Artificial Intelligence 65 / 89

min 3x1 +5x2

subject to 2x1 + x2 ≥ 3 (1)
2x1 +2x2 ≥ 5 (2)
x1 +4x2 ≥ 4 (3)
x1 ≥ 0 (4)
x2 ≥ 0 (5)

Observe, that such an equation might not always have a finite solution
(eg. if one of the coefficients is negative)
Any of the boundary conditions can be multiplied with positive constants.
The boundary conditions can also be added. We could, for example add
(1) to 1.5·(2) and obtain

3x1 +3x2 ≥ 7.5

As, moreover x2 ≥ 0, we obtain necessarily 3x1 +5x2 ≥ 7.5

Can we do better ? Are we able to reach, e.g. 8.5 ??

SS 2017 Thorsten Schmidt – Artificial Intelligence 66 / 89

The dual problem min 3x1 +5x2

subject to 2x1 + x2 ≥ 3 (1)
2x1 +2x2 ≥ 5 (2)
x1 +4x2 ≥ 4 (3)
x1 ≥ 0 (4)
x2 ≥ 0 (5)

Multiplying the inequalities with yi, we arrive at the following scheme: let
us find multipliers y1, y2, y3 ≥ 0, such that

2y1 +2y2 + y3 ≤ 3

y1 +2y2 +4y2 ≤ 5

y1,y2,y3 ≥ 0.

The r.h.s. should be maximized, to be as close to x∗ as possible, such
that the objective function is

max 3y1 +5y2 +4y3.

This is the so-called dual problem. We can easily verify that x∗ = (2,0.5)
verifies the dual problem, hence is optimal.

SS 2017 Thorsten Schmidt – Artificial Intelligence 67 / 89

Arguing similar, but more general we arrive at the following result.

Proposition (Weak duality)

Consider c ∈ Rn, b ∈ Rm and A ∈ Rm×n and the two problems

minc>x, subject to Ax≥ b,x≥ 0 (P)
maxy>b, subject to y>A≤ c>,y≥ 0. (D)

Then, for any x0 satisfying the constraints in (P) and y0 the ones in (D) it holds
that

y>0 b≤ c>x0.

The proof is fairly easy:

y>0 b≤ y>0 (Ax0) = (y→0 A)x0 ≤ c>x0.

It can even be shown that in this case y∗> = c>x∗, see Satz 2.9.17 in
Jungnickel (2014).

SS 2017 Thorsten Schmidt – Artificial Intelligence 68 / 89

Convex optimization

Actually we are interested in convex optimization problems. More precisely,
we consider the following minimization problem (MP)

min f (x)

subject to g(x)≤ 0 (MP)
h(x) = 0,

where x ∈ X ⊂ Rn and g : X → Rm, h : X → Rp. We denote by S the set where
the constraints in (MP) are satisfied. Define the Lagrange function

`(x,λ ,µ) := f (x)+λ
>h(x)+µ

>g(x).

Define the dual function θ(λ ,µ) := inf{`(x,λ ,µ) : x ∈ X}. Then the dual
problem to (MP) is

max θ(λ ,µ) (DP)
subject to µ ≥ 0.

SS 2017 Thorsten Schmidt – Artificial Intelligence 69 / 89

Again, we have strong duality under additional assumptions, see Satz 6.5.10
in Jungnickel (2014).

Proposition (Strong duality)

Let X be a convex set and f : X → R, g : X → Rp be convex functions and
h : X → Rm be an affine function.
If there exists x0 ∈ X , s.t. g(x0)< 0, h(x0) = 0 and 0 ∈

∫
h(X), then

sup{θ(λ ,µ) : µ ≥ 0}= inf{ f (x) : x ∈ S}.

The following necessary conditions are found in Satz 2.9.9. in Jungnickel
(2014).

SS 2017 Thorsten Schmidt – Artificial Intelligence 70 / 89

It is also very useful to obtain necessary conditions, however in the simpler
optimization problem where we only have inequality constraints. Set
I(x) = {i : gi(x) = 0}. We consider

min f (x)

subject to g(x)≤ 0, x ∈ X . (MPIC)

Proposition (Karush-Kuhn-Tucker conditions)

Let X be open and x an admissible point and gi differentiable in x for all
i ∈ I(x) and continuous for i 6∈ I(x). Moreover, let

∇gi(x), i ∈ I(x) be linearly independent. (LICQ)

If x is a local minimum, then there exist µi, i ∈ I(x), s.t.

∇ f (x)+ ∑
i∈I(X)

µi∇gi(x) = 0.

If gi are differentiable for all i, we obtain
∇ f (x)+∑

i
µi∇gi(x) = 0,

µi ≥ 0, and µigi(x) = 0, i = 1, . . . , p.

SS 2017 Thorsten Schmidt – Artificial Intelligence 71 / 89

Back to the kernel trick

We are interested in the following convex problem:

min
β ,β0,ξ

1
2
‖ β ‖2 +C

N

∑
i=1

ξi

subject to yi(x>i β +β0)≥ (1−ξi),∀i (MP)
ξi ≥ 0.

The Lagrange function is

1
2
‖ β ‖2 +C

N

∑
i=1

ξi−
N

∑
i=1

αi(yi(x>i β +β0)− (1−ξi))−
N

∑
i=1

µiξi

with positivity constraints α,µ,ξ ≥ 0.

SS 2017 Thorsten Schmidt – Artificial Intelligence 72 / 89

The Lagrange function is

1
2
‖ β ‖2 +C

N

∑
i=1

ξi−
N

∑
i=1

αi(yi(x>i β +β0)− (1−ξi))−
N

∑
i=1

µiξi.

We see that this function is differentiable in β , β0 and ξ . Setting the
respective derivatives to zero, we obtain

β =
N

∑
i=1

αiyixi, 0 =
N

∑
i=1

αiyi, αi =C−µi. (4)

Inserting this into the Lagrangian we obtain the Wolfe dual objective function

`D =
N

∑
i=1

αi−
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jx>i x j,

giving a lower bound of the objective function of (MP).

SS 2017 Thorsten Schmidt – Artificial Intelligence 73 / 89

∇ f (x)+∑
i

µi∇gi(x) = 0,

µi ≥ 0, and µigi(x) = 0, i = 1, . . . , p,

x admissible.

In addition, we obtain the conditions

αi
(
yi(x>i β +β0)− (1−ξi)

)
= 0,

µiξi = 0,

yi(x>i β +β0)− (1−ξi)≥ 0.

SS 2017 Thorsten Schmidt – Artificial Intelligence 74 / 89

We can also make a further observation: from (4), we see that the
solution for β has the form

β
∗ =

N

∑
i=1

α
∗
i yixi,

with nonzero coefficients α∗i for those observations i which lie on the
margin (the support vectors).
β ∗0 can be computed by the average of all solutions and we arrive at the
decision function

Ĝ(x) = sign[x>β
∗+β

∗
0].

An important observation is that the optimization problem now only
depends on the scalar product

x>i x j

which opens the scenery for reproducing kernel Hilbert spaces.

SS 2017 Thorsten Schmidt – Artificial Intelligence 75 / 89

Reproducing kernel Hilbert spaces

For details on this subject, consider C. Berg, J. P. R. Christensen und
P. Ressel (1984). Harmonic analysis on semigroups. Springer-Verlag.

Definition

Let X be a nonemtpy set. A function K : X×X → C is called a kernel, if
n

∑
i, j=1

cic̄ jK(xi,x j)≥ 0

for all n ∈N, {x1, . . . ,xn} ⊂ X and {c1, . . . ,cn} ⊂C. If we replace C by R, we call
the kernel real-valued.

There are also negative definite kernels (which is not of interest here), and
more precisely one calls the above kernel a positive definite kernel.

Now consider such a kernel K and the linear subspace H0 ⊂CX generated by
the functions

{Kx : x ∈ X},

where Kx(y) = K(x,y).

SS 2017 Thorsten Schmidt – Artificial Intelligence 76 / 89

We introduce a (well-defined) scalar product for f = ∑aiKxi , g = ∑b jKx j by

〈 f ,g〉 := ∑
i, j

aib̄ jK(xi,x j).

Then, H0 is a pre-Hilbert space and its completion H is a Hilbert space.

Most importantly, the scalar product has the reproducing property

〈 f ,Kx〉= ∑
i

aiK(xi,x) = f (x)

for all f ∈ H0 and x ∈ X . This is why the space H is called reproducing
kernel Hilbert space.

SS 2017 Thorsten Schmidt – Artificial Intelligence 77 / 89

Mercer’s theorem allows to obtain a different view on the kernel K. Associate
the integral operator

TK f :=
∫

X
K(.,x) f (x)dν(x)

to the kernel K (in L2(X)). The the spectracl decomposition of TK yields

K(x1,x2) = ∑
n

λnφn(x1)φ̄n(x2). (5)

The RKHS is given by

H = { f ∈ L2(X) : ∑
n

λ
−1
n 〈 f ,φn〉2 < ∞}.

This yields in turn the representation

f (x) = ∑
n

anφn(x).

On the other side, any kernel satisfying (5) is non-negative definite and thus
leads to a RKHS.

SS 2017 Thorsten Schmidt – Artificial Intelligence 78 / 89

Summarizing, we obtain the following:
A RKHS allows a representation

f (x) = ∑
n

anφn(x)

with an associated kernel K satisfying

K(x1,x2) = ∑
n

λnφn(x1)φ̄n(x2).

One can think of transforming x to φn(x) such that

{(φn(x))∞
n=1 : x ∈ X}

is called the feature space. This can in principle be an infinite
dimensional space.

SS 2017 Thorsten Schmidt – Artificial Intelligence 79 / 89

Kernel examples

From T. Evgeniou, M. Pontil und T. Poggio (2000). „Regularization networks
and support vector machines“. In: Advances in computational
mathematics 13.1, S. 1–50 we cite the following list of kernels:

SS 2017 Thorsten Schmidt – Artificial Intelligence 80 / 89

The choice of the kernel should be adapted to the question and
influences the performance massively !
Most important are probably: Gaussian (RBF), polynomial and splines.
But there are many other choices, for example in speech recognition
(where one uses string kernels...)

SS 2017 Thorsten Schmidt – Artificial Intelligence 81 / 89

MNIST dataset with SVM

Lets look at an example: our aim is to classify handwritten digits with SVM.
We will use (parts of) the MNIST dataset, available at
http://yann.lecun.com/exdb/mnist/.
This includes 60.000 images of handwritten digits (0-9) with
classification. (→ wich learning ?)
Lets get an impression of the first one hundred pictures:

SS 2017 Thorsten Schmidt – Artificial Intelligence 82 / 89

http://yann.lecun.com/exdb/mnist/

First 100 digits from the MNIST dataset.
SS 2017 Thorsten Schmidt – Artificial Intelligence 83 / 89

Taken from https://gist.github.com/brendano/39760
Copyright under the MIT licens:
I hereby license it as follows. This is the MIT license.
Copyright 2008, Brendan O’Connor
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial portions of the Software.

SS 2017 Thorsten Schmidt – Artificial Intelligence 84 / 89

library(e1071)

load_mnist <- function() {
load_image_file <- function(filename) {

ret = list()
f = file(filename,’rb’)
readBin(f,’integer’,n=1,size=4,endian=’big’)
ret$n = readBin(f,’integer’,n=1,size=4,endian=’big’)
nrow = readBin(f,’integer’,n=1,size=4,endian=’big’)
ncol = readBin(f,’integer’,n=1,size=4,endian=’big’)
x = readBin(f,’integer’,n=ret$n*nrow*ncol,size=1,signed=F)
ret$x = matrix(x, ncol=nrow*ncol, byrow=T)
close(f)
ret

}
load_label_file <- function(filename) {

f = file(filename,’rb’)
readBin(f,’integer’,n=1,size=4,endian=’big’)
n = readBin(f,’integer’,n=1,size=4,endian=’big’)
y = readBin(f,’integer’,n=n,size=1,signed=F)
close(f)
y

}
train <<- load_image_file(’train-images-idx3-ubyte’) # Images
test <<- load_image_file(’t10k-images-idx3-ubyte’)

train$y <<- load_label_file(’train-labels-idx1-ubyte’) # Labels
test$y <<- load_label_file(’t10k-labels-idx1-ubyte’) }

show_digit <- function(arr784, col=gray(12:1/12), ...) {
image(matrix(arr784, nrow=28)[,28:1], col=col, ...)}

SS 2017 Thorsten Schmidt – Artificial Intelligence 85 / 89

setwd("somepath/MNIST")
load_mnist()

We plot the first 100 images
par(mfrow=c(10,10),mai=c(0,0,0,0))
for (i in 1:100) {

show_digit(train$x[i,],col=gray(12:1/12),xaxt="n", yaxt="n")
}

N=2000
dat=data.frame(x=train$x[1:N,],y=as.factor(train$y[1:N]))
svmfit = svm (y ~., data=dat, method="class", kernel="linear", cost=10, scale=FALSE)

This is the SVM-routine. Note that we chose linear and cost factor C = 10.
Additionally, we only use 2000 samples for training (otherwise it takes
quite long. 10.000 is feasiable...)

SS 2017 Thorsten Schmidt – Artificial Intelligence 86 / 89

#prediction
testdat = data.frame(x=test$x[1:100,])
pred = predict(svmfit,testdat)

table(pred,test$y[1:100])
sprintf("Error rate: %f",1-sum(pred == test$y[1:100])/100)

This gives the following result:

pred 0 1 2 3 4 5 6 7 8 9
0 8 0 0 0 0 0 0 0 0 0
1 0 14 0 0 0 0 0 0 0 0
2 0 0 8 0 0 1 2 0 0 0
3 0 0 0 11 0 0 0 0 0 0
4 0 0 0 0 14 0 0 0 0 0
5 0 0 0 0 0 6 0 0 0 0
6 0 0 0 0 0 0 8 0 0 0
7 0 0 0 0 0 0 0 14 0 0
8 0 0 0 0 0 0 0 0 2 0
9 0 0 0 0 0 0 0 1 0 11

"Error rate: 0.040000"

Which is already remarkable. Which of the images are misclassified ?

SS 2017 Thorsten Schmidt – Artificial Intelligence 87 / 89

SS 2017 Thorsten Schmidt – Artificial Intelligence 88 / 89

Regularization on RKHS

Classical regularization theory utilizes RKHS for the following minimization
question:

min
f∈H

1
n

n

∑
i=1

(yi− f (xi))
2 +λ ‖ f ‖H ,

SS 2017 Thorsten Schmidt – Artificial Intelligence 89 / 89

	Support vector machines
	The statistical classification problem
	A short excursion to convex optimization
	The kernel trick
	Reproducing kernel Hilbert spaces
	MNIST - data: an example

