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Ludger Rüschendorf, University of Freiburg

This note is concerned with some historical remarks and a partial review on two
interesting mathematical subjects, the generalized Hoeffding–Fréchet functionals and the
Monge–Kantorovich mass transportation problem. Both topics have a different motivation
and history and are often considered in the literature as different subjects.The main aim of
this review is to point out the close connection of these topics and to indicate some possibly
fruitful relationships. For the class of Hoeffding–Fréchet functionals risk bounds for a lot
of well motivated additional model restrictions have been worked out in recent years.
We indicate some interesting connections of these developments to mass transportation
problems as, e.g., to the solution of non-linear mass transportation problems or to the use
of stochastic ordering methods to the solution of mass transportation problems and give
corresponding references in the literature.

1 Mass transportation problem

The mass transportation problem was introduced by Kantorovich (1942, 1948) as a gener-
alization of the Monge transportation problem to transport one mass-distribution P1 with
minimal cost to a second mass-distribution P2. While Monge considered only transport
maps T from P1 to P2 Kantorovich allowed splitting of the mass by means of more gen-
eral transport kernels K such that KP1 = P2. In this formulation the set of all admissible
transport plans is identified with the Fréchet class M(P1, P2) of measures on the product
space with marginals P1, P2. W.r.t. transport costs c(x, y) the optimal transport (OT)
problem then is given by

m(c) := inf

{∫
c(x, y)µ(dx, dy); µ ∈M(P1, P2)

}
((OT), 1.1)

Kantorovich (1942) stated as main result the identity of the OT problem with a dual
problem (DT). The stated dual problem however was correct only in the case that the
cost c is a metric.

In more general form this duality theorem for the metric case was given in the paper
of Kantorovich and Rubinstein (1957) and is known as Kantorovich–Rubinstein Theorem.
It states for c = d being a metric

m(d) = DT (d) := sup

{∫
fd(P1 − P2); f ∈ Lip(1)

}
(1.2)

where Lip(1) is the class of Lipschitz functions with constant 1, i.e. |f(x)−f(y)| ≤ d(x, y),
∀x, y.

General versions of the Kantorovich–Rubinstein theorem were given later in Levin
(1975), Dudley (1976), Fernique (1981), de Acosta (1982), and Kellerer (1984a). Mass
transportation problems were a main subject in the Russian probability literature and
were developed in particular in the context of probability metrics (minimal metrics) and
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in connection with convergence results in central limit theorems, see Levin (1975), Levin
and Milyutin (1979), Zolotarev (1976), Rachev (1985, 1991).

In particular also the related mass transshipment problem formulated in terms of
masses µ with given difference of the marginals µ2 − µ1 = P2 − P1 was investigated in
great detail. The main argument for their treatment is a reduction argument allowing for
general cost functions c a reduction to an associated mass transportation problem with
metric costs.

In recent time this problem has found a lot of interest in various mathematical fields
like in analysis and PDEs, in Monge–Ampère–Boltzmann and evolution equations as well
as for stochastic differential equations. It is an important tool in Riemannian geometry as
for Ricci curvature bounds and gradient flows as well as for various classes of inequalities
in probability and analysis, for isoperimetric inequalities and for transportation inequali-
ties. The induced minimal metrics like the Kantorovich metric or the minimal L2-metric
(Wasserstein metric) are a main tool in the analysis of recursive stochastic equations and
algorithms. They are of importance in statistics in risk theory and in mathematical finance
for the construction of robust (neighbourhood) models (robust modelling) as well as in
the area of image reconstruction and statistical clustering.

For some of these developments see the expositions in Rachev (1985, 1991), Cuesta-
Albertos, Rüschendorf, and Tuero-Diaz (1993), Cuesta-Albertos, Matrán, Rachev, and
Rüschendorf (1996), Rachev and Rüschendorf (1998a,b), Villani (2003), Ambrosio (2003),
Ambrosio and Pratelli (2003), Ambrosio, Gigli, and Savaré (2005), Puccetti and Rüschen-
dorf (2012a,b), Embrechts, Puccetti, and Rüschendorf (2013), Santambrogio (2015), Puc-
cetti, Rüschendorf, Small, and Vanduffel (2017), Rüschendorf (2018), and Peyré and Cu-
turi (2018, 2019).

By all these developments the topic of mass transportation has become a most fruitful
tool for various mathematical areas.

2 Generalized Hoeffding–Fréchet functionals

Independently from the motivations and development of the Monge–Kantorovich mass
transportation problem there has been a parallel development of so called generalized
Hoeffding–Fréchet functionals which aim to describe the range of possible influence of
stochastic dependence on the expectation of a functional or more generally on a non-
linear (convex) functional of the random vector.

The historical origin of this class of problems is to be found in early work of the Italian
school of probability like Gini (1914), Salvemini (1949), and Dall’Aglio (1956) as well as by
Fréchet (1940, 1951) and Hoeffding (1940, 1951), who established upper and lower bounds
for a distribution function F of n variables, when marginals F1, . . . , Fn are prescribed as
well as sharp upper and lower bounds in the real case n = 2 for EX1X2 with Xi ∼ Fi,
i = 1, 2. An extension to bounds for Eϕ(X1, X2) for supermodular functions ϕ was given
in Cambanis, Simons, and Stout (1976), Whitt (1976), Szulga (1978), and Tchen (1980).
A general formulation of this class of topics was introduced in Rüschendorf (1979, 1980,
1981a,b) in general (multimarginal) context as generalized Hoeffding–Fréchet functionals
defined for probability measures Pi on (Xi,Ai), 1 ≤ i ≤ n and functions ϕ on X =

∏n
i=1 Xi

by

M(ϕ) := sup

{∫
ϕdP ; P ∈M(P1, . . . , Pn)

}
, (2.1)

where M(P1, . . . , Pn) is the Fréchet class of measures P on the product

(X,A) =
( n∏
i=1

Xi,⊗ni=1Ai

)
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with marginals P1, . . . , Pn. So M(ϕ) describes the maximal value of the integral under all
possible dependence structures and fixed marginals P1, . . . , Pn. Similarly m(ϕ) = inf{. . . }
gives the minimal value and the interval (open or closed) (m(ϕ),M(ϕ)) describes the range
of values caused by dependence.

In modern risk theory, where X is a risk vector with known marginal distributions
Pi of Xi this gives the range of best and worst case risk vector. In early papers on this
topic there were given general duality results in Rüschendorf (1979, 1980, 1981c), Gaffke
and Rüschendorf (1981), and Kellerer (1984a,b), Ramachandran and Rüschendorf (1995,
2000) of the form

M(ϕ) = inf

{∑∫
ϕi dPi; ϕ ≤

∑
ϕi

}
(2.2)

implying in particular sharpness of Fréchet bounds and improvements of classical in-
equalities like Hölder’s, Cauchy–Schwarz’s and Jensen’s inequality, when the marginal
distribution functions are known.

The generalized Hoeffding–Fréchet functional in the case n = 2 is identical to the
Kantorovich mass transportation problem, when ϕ represents the cost of transportation.
As consequence the above mentioned duality results for the Hoeffding–Fréchet functionals
were the first valid duality results for the Kantorovich mass transportation problem with
general (non-metric) costs.

They have a natural interpretation and were introduced from the beginning not only
for two but for a general number of marginals (multimarginal transportation problems).
From the perspective of mass transportation problems only later on the multi-marginal
transportation problems were introduced, where the mass transport happens in several
intermediate steps x1 = x, x2, . . . , xn = y from x to y. Here not only the initial mass
P = P1 and the final mass Q = Pn are prescribed but also the intermediate masses
Pi are prescribed and the cost of the transport depends on all intermediate steps, c =
c(x1, x2, . . . xn), as, e.g., for c(x1, . . . , xn) =

∑n−1
i=1 c(xi, xi+1).

This connects to the much earlier development of the mass transshipment problem (as
mentioned before) where only the difference between the final and the initial distributions
Q − P is prescribed, the number of intermediate steps varies over all natural numbers,
and the intermediate masses Pi, 2 ≤ i ≤ n− 1 can be chosen in a free way.

Hoeffding–Fréchet functionals are a main tool for establishing (sharp) risk bounds in
risk theory under (complete) dependence uncertainty.

For the numerical solution of the problem of determining sharp risk bounds a de-
scription of the Hoeffding–Fréchet problem in terms of a rearrangement problem is fun-
damental. We state this result for the problem to determine the maximal tail risk, see
Rüschendorf (1983).

Theorem 2.1 (Rearrangement = Dependence) Let F(F1, . . . , Fd) be the set of all
joint distributed functions on Rd with marginals F1, . . . Fd.
Let U be a random variable with FU = U(0, 1). Then

F(F1, . . . , Fd) =
{
F(f1(U),...,fd(U)); fi ∼r F−1i , 1 ≤ i ≤ d

}
.

M(s) = sup
{
P
( n∑
i=1

Xi ≥ s
)

; Xi ∼ Fi
}

= 1− inf
{
a; ∃ fαj ∼r F−1j |[α,1],

n∑
j=1

fαj ≥ s
}
.

Here f =∼r g denotes that g is a rearrangement of f , i.e. both functions have the
same distribution function.
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The reformulation of the tail risk problem as a rearrangement problem led to the
introduction of the rearrangement algorithm (RA) which allows a precise determination
of tail risk bounds or equivalently of VaR (= Value at risk) bounds, VaRα or VaRα in
Puccetti and Rüschendorf (2012a).

The following example in Table 2.1 for random vectors of Pareto(2) distributed risks,
where the exact value of the upper bound VaR α is known shows that the RA algorithm
is precise. The Example in Figure 2.1 shows based on RA the wide VaR range for the

d = 8 N = 1.0e05 avg time: 30 secs

α VaRα (RA range) VaR+
α (exact) VaRα (exact) VaRα (RA range)

0.99 9.00 – 9.00 72.00 141.67 141.66 – 141.67

0.995 13.13 – 13.14 105.14 203.66 203.65 – 203.66

0.999 30.27 – 30.62 244.98 465.29 465.28 – 465.30

d = 56 N = 1.0e05 avg time: 9 mins

α VaRα (RA range) VaR+
α (exact) VaRα (exact) VaRα (RA range)

0.99 45.82 – 45.82 504.00 1053.96 1053.80 – 1054.11

0.995 48.60 – 48.61 735.96 1513.71 1513.49 – 1513.93

0.999 52.56 – 52.58 1714.88 3453.99 3453.49 – 3454.48

d = 648 N = 1.0e05 avg time: 8 hrs

α VaRα (RA range) VaR+
α (exact) VaRα (exact) VaRα (RA range)

0.99 530.12 – 530.24 5832.00 12302.00 12269.74 – 12354.00

0.995 532.33 – 562.50 8516.10 17666.06 17620.45 – 17739.60

0.999 608.08 – 608.47 19843.56 40303.48 40201.48 – 40467.92

Table 2.1 Estimates for VaRα and VaRα for random vectors of Pareto(2)-distributed risks.

classical Moscadelli (2004) data with d = 8 for operational risks with a generalized Pareto
distribution (GPD).

This example shows that the unconstrained bounds corresponding to the unrestricted
mass transportation problem are too wide to be usable in this application.

3 Optimal multivariate couplings and transports

There is a difference in notation of researchers working in the more analytically oriented
area of mass transportation problems and those working in the more probabilistic area
of Hoeffding–Fréchet functionals. In the case n = 2 in the first group an optimal solution
of the transportation problem is given by a measure µ in the Fréchet class M(P1, P2)
resp. a transport map T from P1 to P2. For the optimization problem in Hoeffding–
Fréchet functionals a solution is typically given by an optimal coupling (X1, X2) of random
variables with distributions Xi ∼ Pi, i = 1, 2, i.e. m(ϕ) = Eϕ(X,Y ).

This difference in notation may have led in several instances and presentations of the
theory of mass transportation to neglect the corresponding developments from the area of
Hoeffding–Fréchet functionals. An example of this kind is the basic transportation result
in the case of optimal L2-couplings with cost function c(x, y) = ‖x− y‖2. The basic result
for this problem is the following theorem.
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Figure 2.1 VaR range and comonotonic VaR(8) (in log-scale on the right) for the sum of d = 8
GPD risks with parameters following Moscadelli (2004), based on RA for N = 1 : 0e05.

Theorem 3.1 (Optimal L2-couplings)
Let Pi ∈M1(Rk,Bk), i = 1, 2 with

∫
‖x‖2 dPi(x) <∞, then:

a) There exists an optimal L2-coupling (X,Y ) of P1, P2.

b) X ∼ P1, Y ∼ P2 is an optimal L2-coupling of P1, P2 ⇔ ∃ convex, lsc f ∈ L2(P1) such
that Y ∈ ∂f(X) a.s.

c) If P1 � λ\k, then for f as in b) ∂f(X) = {∇f(X)} a.s. and (X,∇f(X)) is an a.s.
unique solution of the Monge transportation problem.

Remark 3.2 (Optimal L2-coupling theorem) Part a) of this theorem follows from a
standard existence result. The most important point of this theorem is part b) which was
given in this form first in Rüschendorf and Rachev (1990). The proof there is based on
the above stated duality theorem. Part c) is an immediate consequence of part b) since
convex functions f are Lebesgue a.s. differentiable and thus ∂f(x) = {∇f(x)} a.s. The
sufficiency part of b) is contained already in Knott and Smith (1984, 1987).

Brenier (1991) established the important particular case in b) for P1 � λ\k with
bounded support, as well as the uniqueness of solutions in part c). In a large part of
the literature, in particular the analysis oriented literature, this theorem is denominated
as ‘Brenier’s theorem’.

By the above given history this terminology seems not justified and should be replaced
by a more fair denomination as, e.g., the more neutral ‘optimal L2-coupling theorem’ and
mentioning all main contributions to this important result.

The optimal L2-coupling theorem (Theorem 3.1) has been extended in Rüschendorf
(1991a,b, 1996) to general cost functions c as follows.

Theorem 3.3 (Optimal c-coupling) Let c be a lower majorized cost function (i.e.
c(x, y) ≥ f1(x) + f2(y) for some f1 ∈ L1(P1), f2 ∈ L2(P2)) and assume that m(c) <∞.

Then a pair (X,Y ) with X ∼ P1, Y ∼ P2 is an optimal c-coupling of P1, P2, i.e.,
m(c) = Ec(X,Y ) if and only if

(X,Y ) ∈ ∂cf a.s. for some c-convex funtion f , (3.1)

equivalently, Y ∈ ∂cf(X) a.s.
Here ∂cf(x) denotes the c-subgradient of f in x and ∂cf = {(x, y); y ∈ ∂cf(x)}.
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For the notions of c-convexity and c-subgradient see Rüschendorf (1991a,b, 1996). This
theorem was reformulated in Knott and Smith (1994) in terms of c-cyclical monotonicity.
For further extensions see Gangbo and McCann (1996), Ambrosio and Pratelli (2003),
and Schachermayer and Teichmann (2009).

A more detailed review of this result is given in Rüschendorf (2007).

It is interesting to remind that the optimal coupling results in Theorem 3.1 and 3.3 for
the case n = 2 are also basic for the solution of a class of non-linear generalized Hoeffding–
Fréchet problems in risk theory namely to determine worst case risks for a specified law
invariant risk measure % on Rk, i.e., to solve for given Pi ∈M1(Rk,Bk), k = 1, . . . , n,

%(X) = sup{%(Y ); Yi ∼ Pi, 1 ≤ i ≤ n}. (3.2)

A representation result in Rüschendorf (2006) gives a representation of law invariant
convex risk measures for risks X with multidimensional components Xi ∼ Pi in terms of
‘max-correlation risk measures’. These are defined for distributions µ of scenario densities
Y = (Y1, . . . , Yk), Y ∼ µ with Yi ≥ 0, Yi ∈ Lq and EYi = 1, 1 ≤ i ≤ n, by

Ψµ(X) = sup
X̃∼X

EX̃ · Y = sup
Ỹ∼Y

EX · Ỹ (3.3)

by the solution of a L2-transportation problem. A convex risk measure Ψ on Lpk with
components in Lp is shown to be law invariant if and only if

Ψ(X) = sup
µ∈A

(Ψµ(X)− α(µ)) (3.4)

for some class A of scenario measures µ and with a penalty function α (see Rüschen-
dorf (2006). This representation result allows to determine the solution of the non-linear
Hoeffding–Fréchet problem in two steps. In step 1 a worst case scenario measure µ0 ∈ A has
to be determined maximizing the average risk functional F (µ) = 1

n

∑n
i=1 Ψµ(Xi)− α(µ).

In the second step n µ0-comonotone solutions X1, . . . , Xn of the usual L2-optimal coupling
problems of Pi, µ0 have to be determined. Thus the non-linear optimal mass transportation
resp. Hoeffding–Fréchet functional problem can be reduced to the solution of a variational
problem and a class of n optimal L2-coupling problems. For more details see Burgert and
Rüschendorf (2006) and Rüschendorf (2006, 2012).

4 Generalized Hoeffding-Frechet functionals and –
mass transportation under additional restrictions

The transportation problems and problems of Hoeffding–Fréchet functionals considered
in the first part of this review concern the unconstrained case, i.e., when all possible de-
pendence structures resp. transportation plans are allowed. The corresponding optimal
risk bounds resp. optimal transportation results however are often not acceptable in ap-
plications. This led in recent years to considerable effort to deal with Hoeffding–Fréchet
functionals with additional restrictions as well on the dependence structure as of structural
kind.

The following figure describes some of the modifications considered in the literature.
Various questions and extensions of the standard mass transportation problems resp. the
corresponding Hoeffding–Fréchet functional problems concern the following points:

a) Hoeffding–Fréchet functionals and mass transportation with additional restrictions.
Generalized moment restrictions, multivariate marginals, positive negative dependence
information, additional structural restrictions as partial information on risk factors
(partially specified risk factor models) or models with inherent subgroup structure and
transports with local or global capacity or flow rate constraints.
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Figure 4.1

b) additional martingale constraints lead to improved price bounds

c) new ordering methods within subclasses

d) worst case risks w.r.t. risk measures correspond to non-linear mass transportation, case
of higher dimensional risks

The general intuition is that positive dependence information allows to increase lower
risk bounds (but not to decrease upper bounds) while negative dependence information
allows to decrease upper risk bounds (but not to increase lower bounds).

These points concern mainly modifications of the generalized Hoeffding–Fréchet func-
tional problem. A general treatment of some topics as in a) is given in Rüschendorf (2013)
and a far extended exposition in the recent textbook Rüschendorf, Vanduffel, and Bernard
(2024). The results to point a) are coming and motivated to a great extent from the gen-
eralized Hoeffding–Fréchet functionals. For mass transportation problems there have been
investigated several classes of constraints on the transportation plans like capacity con-
straints,locally and globally, describing f.e. allowed or forbidden regions of the transport
plan or posing constraints on flow rates in a dynamical formulation of the transport prob-
lem. For some references on this see Barnes and Hoffman (1985), Rachev and Rüschendorf
(1994) , Cuesta-Albertos et al. (1996), Rachev and Olkin (1999), Korman and McCann
(2015), Ekren and Soner (2018) and Dong et al (2024 ).

A particular interesting class of constraints for the masstransportation problem are
the quite recently intensively studied martingale mass transportation problems in point
b) where the motivation of the additional martingale restriction comes from the martingale
structure induced by the financial martingale pricing measures (see e.g., Beiglböck et al
(2013)). Point c) of the list indicates that the solution of such kind of problems is often
based on the extension and use of several stochastic ordering results in these subclasses.

The problem of non-linear mass transportation problems in point d) of the list was
already described in brief form at the end of Section 3.

In the following examples we give a small impression of the quality and range of
improvement of the VaR bounds which can be achieved by additional restrictions.
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Panel A: Approximate sharp bounds obtained by the ERA

(md,Md) n = 10 n = 100
ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95% (4.401; 15.72) (4.091; 21.85) (3.863; 26.19) (47.96; 84.72) (42.48; 188.9) (39.61; 243.3)

d = 10,000 VaR99% (5.486; 28.69) (4.591; 43.45) (4.492; 53.22) (48.99; 129.5) (46.61; 366.0) (45.36; 489.5)

VaR99.5% (6.820; 39.48) (5.471; 59.60) (4.850; 73.11) (49.23; 162.8) (47.54; 499.1) (46.68; 671.5)

Panel B: Variance-constrained bounds

(ad, bd) n = 10 n = 100
ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95% (4.398; 16.03) (4.089; 21.92) (3.861; 26.23) (47.96; 84.74) (42.48; 188.9) (39.61; 243.4)

d = 10,000 VaR99% (4.725; 30.20) (4.589; 43.64) (4.490; 53.50) (48.99; 129.6) (46.59; 367.3) (45.33; 491.7)

VaR99.5% (4.800; 40.74) (4.705; 59.80) (4.634; 73.77) (49.23; 162.9) (47.54; 500.0) (46.65; 676.3)

VaR95% (4.372; 16.94) (4.037; 23.30) (3.791; 27.96) (48.01; 87.75) (42.09; 200.3) (38.99; 259.2)

d = +∞ VaR99% (4.725; 32.25) (4.578; 46.77) (4.470; 57.41) (49.13; 136.2) (46.53; 393.1) (45.18; 527.4)

VaR99.5% (4.806; 43.63) (4.702; 64.22) (4.634; 77.72) (49.39; 172.2) (47.56; 536.4) (46.60; 726.9)

Panel C: Unconstrained bounds independent of ρ

(Ad, Bd) n = 10 n = 100
VaR95%, (3.646; 30.33) (36.46; 303.3)

d = 10,000 VaR99% (4.447; 57.76) (44.47; 577.6)

VaR99.5% (4.633; 74.11) (46.33; 741.1)

VaR95% (3.647; 30.72) (36.47; 307.2)

d = +∞ VaR99% (4.448; 59.62) (44.48; 596.2)

VaR99.5% (4.635; 77.72) (46.35; 777.2)

Table 4.1 Bounds on Value-at-Risk of sums of Pareto distributed risks (θ = 3)

4.1 Risk bounds under moment constraints

Let Xi ∼ Fi, 1 ≤ i ≤ n, and assume we are given an upper bound on the variance of
Sn =

∑n
i=1Xi

Var(Sn) ≤ s2. (4.1)

This is a simple additional information often available for risk models. We denote for given
α

M = sup{VaRα(Sn); Xi ∼ Fi, 1 ≤ i ≤ n,Var(Sn) ≤ s2}
m = inf{VaRα(Sn); Xi ∼ Fi, 1 ≤ i ≤ n,Var(Sn) ≤ s2}.

(4.2)

Then by means of a Cantelli type bound it holds (see Bernard et al(2017a)).

Theorem 4.1 α ∈ (0, 1) and Var(Sn) ≤ s2, then

a := max

(
µ− s

√
α

1− α
,A

)
≤ m ≤ VaRα(Sn) ≤M

≤ b := min

(
µ+ s

√
α

1− α
,B

)
, µ = ESn.

An extension of the RA, the ERA as introduced in Bernard et al (2017b), allows to
solve these kind of problems precisely. For this problem with additional bounds on the
variance of the joint portfolio Sn the following example of Pareto(3) distributed risks and
for various levels of variance bounds induced by the correlation % between the variables
shows that the value of the ERA (which corresponds to a real dependence structure) is
quite close to the upper Cantelli bound. This implies that both – the ERA and the Cantelli
bounds – are precise.

For more details we refer to Bernard et al (2017c) including higher order moment
bounds like on the first 3 or 4 moments of Sn allow to improve the upper risk bounds, see
Bernard et al (2017c).

The upper moment bounds on Sn are negative dependence restrictions and thus indi-
cate improvements of the upper risk bounds.
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4.2 Partially specified risk factor models

A practically most relevant additional model assumption are the partially specified risk
factor models.

Let X = (X1, . . . , Xn) be a risk vector; Z a risk factor variable such that

Xj = fj(Z, εj), 1 ≤ j ≤ n, (4.3)

where Z is a systematic risk factor and εj are individual risk factors. We assume that
the distributions of (Xj , Z) ∼ Hj , 1 ≤ j ≤ n are known, but the joint distribution of
X, Z is unknown. This implies that the marginal distributed functions Fj of Xj and the
conditional distribution functions Fj|z of Xj given Z = z are known. Then the model

A(H) = {(X,Z); (Xj , Z) ∼ Hj , 1 ≤ j ≤ n} (4.4)

is called partially specified risk factor model. Precise but quite involved improved upper
and lower bounds for the partially specified risk factor model can be formulated in terms of
the conditional models. The risk factor Z may introduce positive or negative dependence
information and thus leads to reduction of the risk bounds. This model was introduced
and investigated in Bernard et al (2017a) ,and in Bernard et al (2017b) . Based on a
mixing representation of the model a simple to use representation of the sharp upper
VaRα bound is given there which is based on the conditionally comonotonic vector. This
model is shown to lead to potentially considerable reduction of the upper risk bounds. An
insightful example showing this effect is the following.

Example 4.2 (Pareto distributions with dependence parameter p)
Let εji ∼ Pareto(4), U ∼ U(0, 1) and I ∼ B(1, p). Assume that we have two groups of
risks X1

j , X2
j , 1 ≤ j ≤ n/2 where Xi

j are given by

X1
i = (1− U)−1/3 − 1 + ε1i

X2
i = I((1− U)−1/3 − 1) + (1− I)(Z−1/3 − 1) + ε2i .

Then the common risk factor Z = (1−U)−1/3−1 is Pareto(3) distributed and thus domi-
nates the individual risk factors. For p small close to 0 the common risk factor introduces
a strong form of negative dependence, for p large close to 1 it induces a strong form of
positive dependence in the factor model. As consequence we expect for p small a strong
improvement of the upper risk bound and for p large a strong improvement of the lower
risk bounds. This effect is clearly shown in the following figure (Figure 4.2).

Several examples of a similar kind show a similar improvement effect which in the
above example is oaf about 60 % of the range. This indicates that this kind of structural
information can be very useful in real examples.

4.3 Positive and negative dependence information, subgroup struc-
ture models and stochastic ordering

Under one- or two-sided positive or negative dependence information improvements of the
standard bounds for tail risks can be given. In Bignozzi, Puccetti, and Rüschendorf (2015)
and Puccetti et al. (2017) this method has been applied to models having a subgroup
structure with independent subgroups leading in concrete applications in insurance and in
concrete risk portfolios in a banking context to considerable reduction of the risk bounds.
This comparison has been extended in Rüschendorf and Witting (2017) to a systematic
study of a combination of ordering within the subgroups with ordering conditions of the
copulas between the subgroups without assuming necessarily the independence of the
subgroups.
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(a) bounds for the variance, TVaR at 95% and TVaR at 99%, p dependence parameter; p = 0
∼ strong negative dependence; p = 1 ∼ strong positive dependence

n = 50 VaRα TVaRα(Sc) VaRα

(
T+
Z

)
LTVaRα(Sc) VaRα

(
T−Z
)

∆

p = 0.0 157 378 266 68 149 62 %
p = 0.2 158 354 267 69 151 59 %
p = 0.4 164 340 271 70 157 58 %
p = 0.5 169 338 274 70 161 58 %
p = 0.6 175 340 278 70 167 59 %
p = 0.8 189 354 289 69 181 62 %
p = 1.0 205 378 300 68 198 67 %

(b) upper and lower VaR bounds, θ2 = 4, VaRα in dependence on p

Figure 4.2 p ≈ 0 ⇒ strong negative dependence, p ≈ 1 ⇒ strong positive dependence

In some recent papers of Ansari and Rüschendorf (2021a,b, 2024) worst case portfolios
have been identified for several classes of elliptical models, of partially specified risk factor
models and for various classes of general factor models. Thus in these classes of models the
corresponding generalized Hoeffding–Fréchet functionals resp. mass transportation prob-
lems are solved by means of newly developed stochastic ordering methods. Of particular
importance in this context is the construction of corresponding mass-transfers and the use
of mass-transfer theory as in Müller (2013).

For more details and concrete classes of examples we refer to Rüschendorf et al. (2024).

5 Conclusion

As described in the review above the mass transportation problem and the problem of
generalized Hoeffding–Fréchet functionals have from the beginning on a quite different mo-
tivation and arise from different historical sources. For the class of generalized Hoeffding–
Fréchet functionals in recent years a great amount of modifications of the underlying
models induced by various forms of dependence or of structural restrictions have been
worked out. An extended presentation of this kind of results is given in the recent book
by Rüschendorf et al. (2024). From the point of view and motivation by mass trans-
portation also some classes of constraints have been dealt with in the literature from the
beginnings on.

A class of examples given by martingale optimal mass transportation lying somewhere
between these two kinds of motivations has found a lot of interest in recent publications.
There are some fruitful connections as shown above and related developments in these
two areas like the basic characterization of L2 – or more general c-optimal couplings. The
determination of worst case dependence structures w.r.t. convex law invariant risk mea-
sures can also be seen as solution to a class of interesting non-linear mass transportation
problems. It has been treated and solved in connection with generalized Hoeffding–Fréchet
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functionals.
There is also a common development concerning the consideration of practically rel-

evant statistical robustness models as given by restrictions on the class of dependence
structures or given by additional structural information. These kind of restrictions lead
to new classes of relevant mass transportation problems, many of them still waiting for
being solved. For several of the considered classes of dependence or structural restrictions
new stochastic ordering methods, as based on the development of suitable mass transfer
theory, play a key role for the solution of the generalized Hoeffding–Fréchet functionals
resp. for the related mass transportation problems.
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C. Burgert and L. Rüschendorf. Consistent risk measures for portfolio vectors. Insur.
Math. Econ., 38:289–297, 2006.
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P. Embrechts, G. Puccetti, and L. Rüschendorf. Model uncertainty and VaR aggregation.
Journal of Banking Finance, 37(8):2750–2764, 2013.
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M. Fréchet. Les probabilités associées à un système d’événements compatibles et
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G. Peyré and M. Cuturi. Editorial. IMA IAI – Information and Inference special issue on
optimal transport in data sciences. Inf. Inference 8, No. 4, 655–656, 2019.
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L. Rüschendorf. Law invariant convex risk measures for portfolio vectors. Statistics &
Decisions, 24:97–108, 2006.
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Birkhäuser/Springer, 2015.

W. Schachermayer and J. Teichmann. Characterization of optimal transport plans for the
Monge–Kantorovich problem. Proc. Am. Math. Soc., 137(2):519–529, 2009.

A. Szulga. On the Wasserstein metric. Information theory, statistical decision functions,
random processes; Trans. 8th Prague Conf., Vol. B, Prague 1978, 1978.

A. H. Tchen. Inequalities for distributions with given marginals. Annals of Probability, 8:
814–827, 1980.

C. Villani. Topics in Optimal Transportation. Number 58 in Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, 2003.

M. Whitt. Bivariate distributions with given marginals. Annals of Statistics, 4:1280–1289,
1976.

V. M. Zolotarev. Approximation of distributions of sums of independent random variables
with values in infinite-dimensional spaces. Theory of Probability and Its Applications,
21:721–737, 1976.

Department of Mathematical Stochastics
University of Freiburg
Ernst-Zermelo-Str. 1
D – 79104 Freiburg (Germany)
ruschen@stochastik.uni-freiburg.de


