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Abstract

In the context of finding risk bounds for portfolios of risks, Puccetti and Rüschendorf

(2012) introduce the rearrangement algorithm (RA) as a tool for (optimally) rearrang-

ing matrices by permuting, in each step, the elements of a given column. The RA also

has applications in finance and operations research. Bernard and McLeish (2016) and

Bernard et al. (2017) show that, in principle, better results can be expected by permut-

ing the rows of randomly chosen blocks of the matrix. They label such an algorithm the

block rearrangement algorithm (BRA). Various versions of BRA exist, and they mainly

differ with respect to the manner in which the blocks (i.e., the submatrices) are chosen

in each step.

In this paper, we aim to develop an improved version of BRA based on a dynamic

choice of block sizes. That is, we seek to find the optimal sequence of block (submatrix)

sizes. To achieve this, we refine the BRA by sampling the block size, rt, at the t-th

step from a Beta distribution with two parameters that evolve over the different steps.

The proposed BRA Beta is designed to select large block sizes initially (similar to BRA

Binomial), and then transition to smaller sizes (resembling the RA). A numerical study

demonstrates that BRA Beta outperforms other variants of the RA available in the

literature. For example, the improvement in variance reduction achieved by BRA Beta

is double that of other BRA-based algorithms when the risks are heterogeneous and the

portfolio is large (see Section 5).
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1 Introduction

Let Xi be random variables assumed to be square integrable and with given marginal

distributions Fi, i = 1, · · · , d. A classic dependence problem is finding the bounds on the

expectation of ψ(X1, . . . , Xd), in which ψ : Rd → R is a measurable function, i.e., we aim

to determine

mψ = inf{Eψ(X1, . . . , Xd); Xj ∼ Fj , 1 ≤ j ≤ d}, (1.1a)

Mψ = sup{Eψ(X1, . . . , Xd); Xj ∼ Fj , 1 ≤ j ≤ d}. (1.1b)

These two problems are related to various topics in operations research, statistics, and

quantitative risk management. We refer to Puccetti and Rüschendorf (2012) for applications

in statistics, Embrechts and Puccetti (2010) for quantitative risk management and Hsu

(1984), Jakobsons and Wang (2016) and Boudt et al. (2018) for applications in operations

research. We also refer to Rüschendorf et al. (2024) for a detailed account. There are

many problem instances for (1.1a) and (1.1b). For the case in which ψ(X1, . . . , Xd) :=

f
(∑d

j=1Xj

)
such that f is a convex function (risk aggregation), Wang and Wang (2011)

study the problem when the distributions ofXj are completely mixable, leading to a solution

of (1.1a). We refer to Embrechts and Puccetti (2006) and Puccetti and Rüschendorf (2013)

for the tail risk, where ψ(X1, . . . , Xd) := 1X1+···+Xd>x, x ∈ R. Puccetti and Rüschendorf

(2015) put forward a numerical method to approximate (1.1a) and (1.1b) when ψ is a

supermodular function. Moreover, Bernard et al. (2023) derive the analytic solutions for

(1.1a) and (1.1b) when ψ is the product, i.e., when ψ(X1, . . . , Xd) :=
∏d
j=1Xj , and specific

constraints on Fj are satisfied. However, no general analytic result exists to solve problems

(1.1a) and (1.1b).

Puccetti and Rüschendorf (2012) introduce the rearrangement algorithm (RA) to ap-

proximate the bounds mψ and Mψ numerically when ψ(X1, · · · , Xd) := 1f(X1,...,Xd)>x, x ∈
R and the function f is strictly increasing in each coordinate, based on equivalent formula-

tion for the problem in Rüschendorf (1983). The RA rearranges matrices by permuting the

elements of a given column at each step. Puccetti and Rüschendorf (2013) show that the RA

is fast, accurate and can be used to determine the bounds on the distribution of
∑d

j=1Xj .

Bernard and McLeish (2016) and Bernard et al. (2017) demonstrate that better mψ and

Mψ can theoretically be achieved by permuting the rows of randomly chosen blocks of the

matrix and refer it as the block rearrangement algorithm (BRA). Different versions of BRA

exist, distinguished primarily by how the blocks (submatrices) are selected at each step.

For example, Boudt et al. (2018) propose selecting blocks such that the variances of the row

sums are as equal as possible, naming this variation the BRA with Variance Equalization

(BRAVE). In contrast, Bernard and McLeish (2016) and Bernard et al. (2017) randomly

determine block sizes at each step using a binomial distribution, a version referred to here

as the BRA Binomial.
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In this paper, we intend to study the factors that influence the convergence and ac-

curacy of the BRA algorithm. Specifically, we focus on a key factor: the block size of

the submatrix used to be rearranged in each step. Based on this analysis, we propose an

enhanced version of the BRA called BRA Beta, aimed at improving both the accuracy

and speed of convergence. Our experimental findings show that, in the important context

of a relatively high dimensional case, BRA Beta significantly outperforms other existing

variants of the rearrangement algorithm reported in the literature. In addition to the re-

arrangement algorithms, the simulated annealing (SA) algorithm (Kirkpatrick et al., 1983)

can also solve these operations research and risk management problems. The SA algorithm

is one of the simplest meta-heuristic methods to address global optimization problems. For

a comprehensive introduction to the SA algorithm, we refer to Van Laarhoven et al. (1987).

However, the SA algorithm is significantly more time-consuming—often thousands of times

slower than the BRA Beta—particularly when dealing with large portfolios. Boudt et al.

(2018) also illustrate the advantages of these BRA-based methods in operations research

by using them to deal with the classic number partitioning problem in operations research.

Specifically, these authors show how a well-designed BRA, i.e., BRAVE, outperforms the

seminal Karmarkar-Karp differencing algorithm. In our paper, we compare the different

versions of the BRA in assessing model risk uncertainty for measures such as Value-at-Risk

(VaR), Tail VaR, and variance.

This paper presents a novel contribution that addresses the crucial issue in the block

size (i.e. the size of the submatrix) selection for BRA. Unlike previous methods that utilize

constant (time-independent) cardinality selection techniques, such as RA and BRA Bino-

mial, the proposed BRA Beta method introduces a time-dependent approach that uses Beta

distributions with dynamic parameters αt and βt. These time-dependent parameters govern

the selection of block sizes in a flexible and adaptive manner. BRA Beta aims to improve on

existing (B)RA algorithms by using a more effective and more efficient approach for block

size selection.

The structure of the paper is as follows: In Section 2, we recall the theoretical consider-

ations that lead to BRA and discuss its different versions. Section 3 investigates the factors

that impact the performance of BRA. We propose in Section 4 an enhanced version of the

BRA, called BRA Beta. The performance of BRA Beta is evaluated in Section 5, where

we compare it with RA and several variants of BRA. In Section 6, we apply BRA Beta

to approximate the upper bound on VaR for a portfolio of risks. Finally, we present our

conclusions in the last section.

2 A combinatorial problem

In this section, we first recast problem (1.1) as a rearrangement problem; see also Rüschendorf

et al. (2024) for more detail. We then consider a discretized problem and argue that its
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solutions are approximations for the solutions of the rearrangement problem. Finally, we

reformulate the BRA as an optimization technique to solve the discretized problem.

2.1 Rearrangement of functions

Let h, g : Ω → R̄ be integrable functions on a probability space (Ω,F , P ). If h and g have

the same distribution function F , we say g is a rearrangement of h (see the introduction

of the rearrangements of functions in Hardy et al. (1952) and the applications of them in

Luxemburg (1967), Chong and Rice (1971) and Day (1972)). For functions h and g in L1, it

is possible to construct non-decreasing and non-increasing rearrangements, i.e., h∗, g∗ and

h∗, g∗, respectively. In particular,∫
h∗g∗dP ≤

∫
hgdP ≤

∫
h∗g∗dP. (2.1)

Moreover,
∫
h∗g∗dP =

∫
h∗g

∗dP and
∫
h∗g∗dP =

∫
h∗g∗dP . Let M(F1, . . . , Fd) denote

the class of all distributions with marginals Fj , j = 1, . . . , d and all possible dependence

structures. The following classical lemma is recalled from Rüschendorf (1983).

Lemma 2.1 (Fréchet class). Let U be a standard uniform random variable, i.e. U ∼ U(0, 1).

Then

M(F1, . . . , Fd) = {P (h1(U),...,hd(U)); hj is a rearrangement of F−1
j , 1 ≤ j ≤ d}. (2.2)

Let ψ be a supermodular function and coordinate-wise increasing. Then, problem (1.1)

can be reformulated using Lemma 2.1 by the following rearrangement problems:

mψ = inf{Eψ(X1, . . . , Xd); Xj ∼ Fj , 1 ≤ j ≤ d}

= inf{Eψ(f1(U), . . . , fd(U)); fj is a rearrangement of F−1
j , 1 ≤ j ≤ d}, (2.3a)

Mψ = sup{Eψ(X1, . . . , Xd); Xj ∼ Fj , 1 ≤ j ≤ d}

= sup{Eψ(f1(U), . . . , fd(U)); fj is a rearrangement of F−1
j , 1 ≤ j ≤ d}. (2.3b)

Let Y = (Y1, . . . , Yd) ∈ Rd and I be respective a given random vector and a subset of

{1, . . . , d}. Moreover, Ic = {1, . . . , d}\I and r = |I| denotes the cardinality of I. We assume

that for any complementary subvectors Y1 = ((Yj)j∈I) ∈ Rr and Y2 = ((Yj)j∈Ic) ∈ Rd−r,
there exist measurable functions ψrI : Rr → R, ψd−rIc : Rd−r → R and ψ2

I : R2 → R such that

ψ(Y1, . . . , Yd) = ψ2
I (ψ

r
I (Y1), ψ

d−r
Ic (Y2)), 1 ≤ r ≤

⌊
d

2

⌋
, (2.4)

see Puccetti and Rüschendorf (2012, 2015) when r = 1. ψ2
I can be the sum, ψ2

I (Y1, Y2) = Y1+

Y2, the product, ψ2
I (Y1, Y2) = Y1Y2, for Y1, Y2 > 0, the minimum, ψ2

I (Y1, Y2) = min{Y1, Y2},
and the minus maximum, ψ2

I (Y1, Y2) = −max{Y1, Y2} or generally a supermodular function
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of two arguments.

For the minimization and maximization problems in (2.3a) and (2.3b), one obtains the

following well-known necessary conditions under the above settings (Puccetti and Rüschendorf

(2015) and Puccetti and Wang (2015)).

Proposition 2.1. If (f1(U), . . . , fd(U)), where fj is a rearrangement of F−1
j , j = 1, . . . , d,

solves problem (2.3a) (resp., (2.3b)) and ψ is a supermodular function as specified in (2.4)

and strictly increasing in each coordinate, then for any choice of subsets I ⊂ {1, 2, . . . , d}, it
holds that ψrI ((fj(U))j∈I) and ψ

d−r
Ic ((fj(U))j∈Ic) are antimonotonic (resp., comonotonic).

In the following subsection, we approximate the rearrangement problems (2.3) by dis-

cretizing the marginals Fj for j = 1, . . . , d.

2.2 Discretized problem

The next stage to solve (1.1) (or equivalently (2.3)) involves approximating the rearrange-

ment problems in (2.3a) and (2.3b) through discretization of the marginals, Fj , j = 1, . . . , d.

Let X = (x1, . . . , xd) where xj = (x1j , . . . , xnj)
T denotes the j-th column, j = 1, . . . , d,

be a n × d matrix, and I be a subset of {1, . . . , d}. Here, xj reflects the n possible mass

points of Fj , assuming that all discretized marginal support sets of Fj have the same size,

n. Then X1 (resp., X2) is a n × r (resp., n × (d − r)) submatrix obtained from X by

selecting its r (resp., d − r) columns with indices in the subset I (resp., Ic). By applying

the function ψ (resp., ψrI and ψd−rIc ) to X (resp., X1 and X2), the n-dimensional vector

Ψ(X) (resp., ΨI(X1) and ΨIc(X2)) can be computed. Hence,

Ψ(X) =



ψ(x11, . . . , x1d)
...

ψ(xi1, . . . , xid)
...

ψ(xn1, . . . , xnd)


, ΨI(X1) =



ψrI (x1j)j∈I
...

ψrI (xij)j∈I
...

ψrI (xnj)j∈I


, ΨIc(X2) =



ψd−rIc (x1j)j∈Ic
...

ψd−rIc (xij)j∈Ic
...

ψd−rIc (xnj)j∈Ic


,

where ψrI (xij)j∈I (resp., ψ
d−r
Ic (xij)j∈Ic) is obtained by applying the function ψrI (resp., ψ

d−r
Ic )

to the i-th rows of X1 (resp., X2), i = 1, . . . , n. Using (2.4), we have

ψ(xi1, . . . , xid) = ψ2
I (ψ

r
I (xij)j∈I , ψ

d−r
Ic (xij)j∈Ic), 1 ≤ i ≤ n.

We denote by P(X) the set of all n × d matrices obtained from X by swapping elements

within each column, i.e.,

P(X) =
{
X̃ = (x̃ij) : x̃ij = xπj(i),j , π1, . . . , πd are permutations of {1, . . . , n}

}
,
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see similar definitions in Puccetti and Rüschendorf (2012, 2015) and Puccetti and Wang

(2015). Next, we study the problems of how to rearrange the columns of X to obtain

matrices that minimize and maximize 1
n

∑n
i=1 ψ(x̃i) where x̃i = (x̃i1, . . . , x̃id) and X̃ =

(x̃1, . . . , x̃n)
T , i = 1, . . . , n. That is, we consider the problems

mn
ψ = inf

 1

n

n∑
i=1

ψ(x̃i); x̃i = (x̃i1, . . . , x̃id), X̃ = (x̃1, . . . , x̃n)
T ∈ P(X)

 , (2.5a)

Mn
ψ = sup

 1

n

n∑
i=1

ψ(x̃i); x̃i = (x̃i1, . . . , x̃id), X̃ = (x̃1, . . . , x̃n)
T ∈ P(X)

 . (2.5b)

We write x1 ↓ x2 (resp., x1 ↑ x2) to indicate that x
[i]
1 = F−1

1 (ui) and x
[i]
2 = F−1

2 (1− ui)

(resp., x
[i]
2 = F−1

2 (ui)) for i = 1, . . . , n where ui is sampled from U ∼ U [0, 1], and F1 and

F2 are respective marginal distributions of x1 and x2. Let

Oψ(X) =
{
X∗ ∈ P(X) : ΨI(X∗

1) ↓ ΨIc(X∗
2) for any choice of the subsets I

}
be the set of those permutation matrices X∗ such that ΨI(X∗

1) and ΨIc(X∗
2) are antimono-

tonic. Similarly, let

Qψ(X) =
{
X

′ ∈ P(X) : ΨI(X
′
1) ↑ ΨIc(X

′
2) for any choice of the subsets I

}
be the set of those permutation matrices X

′
such that ΨI(X

′
1) and ΨIc(X

′
2) are comono-

tonic. The sets Oψ(X) and Qψ(X) are two classes of possible solutions for the problems

(2.5a) and (2.5b), respectively; see also Proposition 2.1.

2.3 Block rearrangement algorithm

Motivated by Proposition 2.1, we can approximate the bounds mψ and Mψ in (1.1) using

BRA for determining mn
ψ and Mn

ψ in (2.5).

In Figure 1, we show the generic flowchart of the BRA for the case of mn
ψ. We make the

following comments. The subset I is selected uniformly because the homogeneous risks are

employed in this section. In the case of heterogeneous risks, assigning a higher probability

to some columns—expected to matter more in the optimization—could make sense. In the

case of Mn
ψ , we replace the text in the fourth rectangular zone and the rhombic decision

zone by “Rearrange the rows of X̃1 so that ΨI(X̃1) ↑ ΨIc(X̃2)” and “Is X̃ ∈ Qψ(X)?”.

Remark 2.1. The BRA in Figure 1 produces only a local minimum of mψ in (1.1a) and a

local maximum of Mψ in (1.1b). The algorithm terminates once the matrix X̃ ∈ Oψ(X)

or X̃ ∈ Qψ(X) is found. However, such matrices may not be unique. Hence, the necessary

condition in Proposition 2.1 is in general not sufficient to obtain solutions that are globally

optimal.
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n× d matrix X̃ = [x1, . . . , xd]

Sample element rt ∈ {1, . . . , ⌊d2⌋} from a distribution Ft

Select I ⊂ {1, . . . , d} uniformly with |I| = rt

X̃1 = (xj)j∈I and X̃2 = (xj)j∈Ic

Rearrange the rows of X̃1 so that ΨI(X̃1) ↓ ΨIc(X̃2)

Is X̃ ∈ Oψ(X)?

X∗

Stop

yes

no

Figure 1: Flowchart for the BRA.

To answer the decision step that X̃ belongs to the set Oψ(X), we have to check the

antimonotonicity condition for all subsets I, i.e., we need to consider 2d−1 − 1 possibilities

(Proposition 2.1). For a small number of columns (typically when d is less than 30), it is

possible to check all possibilities. However, it is not possible in practice for large values of

d. For instance, when d = 30, the computer needs to check more than one billion times the

antimonotonicity condition for each single decision (step). Furthermore, finding an optimal

solution X∗ after one time rearrangement is almost impossible. Therefore, we put forward

the following pseudo-code for BRA.

There are several versions of BRA, such as RA (Ft is degenerated with only one mass

point with probability one: P(rt = 1) = 1) and BRA Binomial (Ft is B(d, 12) distributed).

We refer to Puccetti and Rüschendorf (2012) for the RA, and Bernard and McLeish (2016)

and Bernard et al. (2018) for the BRA Binomial. Moreover, Boudt et al. (2018) introduce a

version of the rearrangement algorithm named BRA with variance equalization (BRAVE).
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BRA: Pseudo-code of the algorithm to minimize resp. maximize 1
n

∑n
i=1 ψ(x̃i) over

P(X). A BRA step means a single iteration within a loop from Step 4 to 8.

1 Initialize n× d matrix X̃ = (x1, . . . , xd) where xj = (x1j , . . . , xnj)
T denotes the

j-th column (j = 1, . . . , d);
2 Set maximum number of BRA steps T and t = 0;
3 while t ≤ T do

4 Sample element rt from a distribution Ft with domain {1, 2, . . . , ⌊d2⌋};
5 Select uniformly a random subset I ⊂ {1, . . . , d} with |I| = rt;

6 Separate two blocks (submatrices) X̃1 = (xj)j∈I and X̃2 = (xj)j∈Ic from X̃;

7 Rearrange (swap) the rows of X̃1 so that the vector ΨI(X̃1) is antimonotonic

(resp., comonotonic) to ΨIc(X̃2) in the case of problem (2.5a) (resp., (2.5b));
8 Set t = t+ 1;

9 end

In this case, they select I such that the variance of row sums across the two submatrices

are as equal as possible, i.e., I = argminI |Cov(ΨI(X̃1),Ψ(X̃))−Cov(ΨIc(X̃2),Ψ(X̃))|. In
BRAVE, I is selected directly and not the result of first selecting rt and then choosing

uniformly the columns.

As a benchmark, we also study the case in which the cardinality rt of the chosen subset

I is uniform. Therefore, we propose to name this version of BRA, “BRA Unif”, to indicate

that each rt is equally likely.

Definition 2.1 (BRA Unif). A BRA is called BRA Unif if, in Step 4, each Ft is a discrete

uniform distribution with support {1, 2, . . . , ⌊d2⌋}.

We expect that the performance of BRA may be affected by three elements: (1) the

cardinality of a subset I in each time step of the algorithm, i.e., the number rt of columns or

block size of X̃1; (2) how we initialize the matrix X̃; (3) the maximum number of iterations

T . T needs to be large enough such that when replaced by T + k, where k = 50, say, the

change is “negligible”. That is, there is no difference in 1
n

∑n
i=1 ψ(x̃i) after T resp. T + k

steps. See also the relative stop criteria in the footnote of Algorithm 3.1 of Bernard et al.

(2023).

In the remainder of the paper, we study in detail point (1) on the choice of the cardinality

rt of the chosen subset I in each step, which is determined by probability distributions

Ft, t = 0, 1, . . . , T , in Step 4. For the choice of the initial matrix X̃ and the maximum

number T of iterations, we give suggestions based on our ample numerical experience with

the algorithm. The objective is to design an algorithm in such a way that it leads to a

considerable improvement of block rearrangement algorithms.
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3 Effect of block size

In this section, we first present some experiments to show the importance of choosing the

cardinality rt of the subset I in each t-th step of the algorithm.

3.1 Preliminary setting

We assume that ψ(y1, . . . , yd) = (
∑d

j=1 yj)
2. For this choice, equation (2.4) holds, that is∑d

j=1 yj =
∑

j∈I yj +
∑

j∈Ic yj . This assumption corresponds to the problem of minimizing

the variance of a sum of random variables with fixed marginal distributions (see Embrechts

and Puccetti (2010) and Wang and Wang (2011)). We omit the maximization problem Mn
ψ

because, under this assumption, a unique solution is given by the comonotonic vector since

ψ is a supermodular function. Therefore, the minimization problem is now recast as

mn
ψ = inf


1

n

n∑
i=1

 d∑
j=1

x̃ij −
1

n

n∑
i=1

 d∑
j=1

x̃ij




2

; (x̃ij) ∈ P(X)

 . (3.1)

To compare the performance of the algorithms in relation to the manner in which rt,

t = 1, . . . , T , is chosen, we compute across k experiments the average log variance of the

row sums instead of the variance because the variance decreases exponentially fast at the

beginning for all versions of BRA (Boudt et al., 2018).

Definition 3.1 (Average Log Variance of Row Sums). The average log variance of the row

sums across k experiments after t BRA steps denoted by δt is defined as

δt =
1

k

k∑
l=1

log

 1

n

n∑
i=1

 d∑
j=1

xtij −
1

n

n∑
i=1

 d∑
j=1

xtij




2


l

(3.2)

where t ∈ {0, 1, . . . , T} and xtij is the element of matrix X̃ in ith row and jth column after

t BRA steps.

Note that using the average log variance, we get a smoother and more robust experiment

result from BRA. Moreover, δ0 is defined as the log variance of the row sums of the initial

input matrix X̃.

Unless we specify it otherwise in this paper, the initial matrix X̃ used in the algorithm is

comonotonic. That is, the X̃ consists of columns xj = (F−1
j (u1), F

−1
j (u2), . . . , F

−1
j (un))

T ,

j = 1, 2, . . . , d, where ui =
i

n+1 for i = 1, 2, . . . , n. We use the comonotonic X̃ because

by starting with this initial matrix it is our experience that smaller δT values can typically

be obtained than starting with other matrices. This procedure is verified after numerous
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experiments for various initial matrices. For example in Figure 2, we compare the δT for

this comonotonic choice with the δT one would obtain by starting with an “independent”

X̃, that is when the initial matrix consists of entries xij = F−1
j (uij), i = 1, 2, . . . , n and

j = 1, 2, . . . , d, where uij , are n × d simulated values from independent standard uniform

distributed random variables.

Figure 2: Pareto Risks: δt in (3.2) with k = 100, T = 2000, n = 1000 and d = 100. The
left (resp., right) graph shows δt for t ≤ 100 (resp., t > 100). The dashed blue, dash-dotted
orange and solid green lines represent the evolution of δt by implementing the respective RA,
BRA Binomial and BRA Unif, starting from the independent X̃, while the corresponding
red, purple and brown lines show the evolution of δt, starting from the comonotonic X̃.
The tail indexes of the Pareto distributions are 2.

In the following subsection, we run experiments to show the importance of appropriately

choosing rt, t = 1, . . . , T .

3.2 Cardinality of I in BRA

The BRA Binomial from Bernard and McLeish (2016) selects in each t-th step I uniformly

out of 2d−1 − 1 possible pairs of subsets I, Ic ⊂ {1, 2, . . . , d}, where |I| ≤ |Ic|. Thus, in

this situation, the value for rt is not uniformly sampled in {1, 2, . . . , ⌊d2⌋}. For instance,

P(rt = 1) = d
2d−1−1

since there are only d sets with the cardinality equal to 1. In fact, out of

the 2d−1 − 1 possible pairs of subsets I and Ic, there are many more I such that rt is close

to ⌊d2⌋ than that rt = 1 or 2. Thus, in the BRA Binomial, many steps will be done with

blocks of similar size rather than with a tiny block and one big block (as in the RA). The

subset I always has only one element in the case of RA, P(rt = 1) = 1. That is, X̃1 (resp.,

X̃2) is a n×1 (resp., n×(d−1)) matrix. However, in the case of BRA Unif, P(rt = i) = 1
⌊ d
2
⌋
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for all i ∈ {1, 2, ..., ⌊d2⌋}.

Figure 3: The histograms of the cardinality rt of the subset I when implementing four types
of BRA: RA, BRA Binomial, BRA Unif and BRAVE with T = 2000, n = 1000 and d = 100.

Figure 3 presents the histograms of the cardinality rt, t = 1, . . . , T when implementing

four types of BRA: RA, BRA Binomial, BRA Unif and BRAVE. We set T = 2000, n = 1000

(the number of rows) and d = 100 (the number of columns) in the BRA. These four plots

verify our previous comments on the choice of rt. In particular, the histograms of the BRA

Binomial and the BRAVE are similar. Thus, we expect the effects of variance reduction for

these two types of BRA to be similar.

To examine the impact of block size rt, we analyze the δt plots obtained from the imple-

mentation of three distinct BRAs: RA, BRA Binomial and BRA Unif. These algorithms

are applied to an initial matrix X̃, which is sampled from uniform or Pareto distributions

with tail indexes of 2. The same choices have been made in Bernard and McLeish (2016).

Our study focuses on understanding the characteristics of these BRA types. We carry out

experiments by running the BRA with d ∈ {100, 500} (number of columns), n = 1000

(number of rows) and k = 100 (number of repeating experiments), with each experiment

consisting of 2000 BRA steps (T = 2000).

Numerical results (δt) are displayed in Figures 4 and 5. On the x-axis, we display

the BRA steps; on the y-axis, we represent the magnitude of the average log variance of

the row sums (as in Definition 3.1). By analyzing Figure 4, which depicts the δt with

uniformly distributed variables, and Figure 5, which shows the δt with Pareto distributed

variables, we can observe that the BRA Binomial and BRA Unif lead to a higher variance

reduction in the initial steps. However, the RA exhibits a much higher variance reduction

after approximately 25 steps for uniformly distributed variables and 100 steps for Pareto

distributed variables. The BRA Unif method outperforms the BRA Binomial method in all

11



Figure 4: Uniform Risks: δt in (3.2) with k = 100, T = 2000 and n = 1000. The left
(resp., right) graphs show plots when d = 100 (resp., d = 500). The top figures display the
δt during the first 100 steps, while the bottom display the δt after 100 steps. The dashed
blue, dash-dotted orange and solid green lines represent the evolution of δt by implementing
the respective RA, BRA Binomial and BRA Unif.

tested scenarios, indicating that selecting I uniformly out of the 2d−1 − 1 possible subsets

as done in the BRA Binomial is not the optimal choice for selecting rt, t = 1, . . . , T . We

also observe that RA is sometimes the best of all algorithms discussed so far.

Hence, our observations suggest the need for a BRA design that further improves BRA

Unif and RA. That is, we propose a BRA where the first steps are performed with larger

block sizes while the last steps are performed with smaller ones. This approach would result

in an algorithm that behaves similarly to the BRA Binomial at the beginning, and more

like the RA towards the end, achieving better overall performance. We will design a BRA

taking these features into account in the next section.

4 Improved BRA

In this section, we propose a better method to select the rt when running the BRA to get

the best convergence and accuracy.

4.1 BRA Beta

Let {r1, . . . , rT } be a sequence of the cardinality of the subset I. That is, rt is the number

of columns of X̃1 for the tth BRA step. Note that t ∈ {1, . . . , T}, and T is the maximum

12



Figure 5: Pareto Risks: δt in (3.2) with k = 100, T = 2000 and n = 1000. The left
(resp., right) graphs show plots when d = 100 (resp., d = 500). The top figures display the
δt during the first 100 steps, while the bottom display after 100 steps. The dashed blue,
dash-dotted orange and solid green lines represent the evolution of δt by implementing the
respective RA, BRA Binomial and BRA Unif. The tail indexes of the Pareto distributions
are 2.

number of BRA steps in the BRA. In particular, rt is sampled from a random variable Rt,

which is equal to one plus the floor of the product of d
2 and a Beta distributed random

variable Bt with parameters αt and βt. The discrete distribution is then scaled to have

support in {1, 2, . . . , ⌊d2⌋+ 1}. That is,

Rt =

⌊
d

2
Bt

⌋
+ 1,

where Bt ∼ Beta(αt, βt). Therefore, the probability mass function of Rt under the setting

is

P(Rt = rt) = P

(⌊
d

2
Bt

⌋
+ 1 = rt

)
= P

(
rt − 1 ≤ d

2
Bt < rt

)

= P
(
2(rt − 1)

d
≤ Bt <

2rt
d

)
=

Γ(αt + βt)
∫ b
a t

αt−1(1− t)βt−1dt

Γ(αt)Γ(βt)
,

where a = 2(rt−1)
d , b = 2rt

d , and Γ(x) is the gamma function. Thus, we can control rt by

appropriately choosing αt and βt. To do so, we use the following parametrization of the
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Beta distribution with two extra parameters, A and B,

αt = A−
(
t− 1

T − 1

) 1
B

(A− 1),

βt = 1 +

(
t− 1

T − 1

) 1
B

(A− 1).

(4.1)

Using (4.1) and proper parameters A and B, we can design a BRA that behaves similarly to

the BRA Binomial at the initial steps and more like the RA towards the end. Note that the

mean of a beta distribution with parameters αt and βt is given by αt
αt+βt

. When A = B = 1,

the Beta distribution is uniform; thus rt is equally likely among {1, 2, . . . , ⌊d2⌋ + 1}. That

Figure 6: Parameters of the Beta distribution in terms of t. The left panel shows the
parameters αt and βt for t ∈ {1, 2, . . . , 1000} and some examples of A and B, while the
right shows the average rt from the corresponding Beta distribution.

is, we obtain the BRA Unif. When A ̸= 1 and B = 1, we have a linear decrease in the

average block size used in the BRA over time, as displayed in the right panel of Figure 6.

Furthermore, when A ̸= 1 and B > 1, we have a convex curve decrease of average rt.

The parameters A and B control the switching speed of the algorithm from behaving BRA

Binomial to RA. The choice of αt and βt over time t implies that the BRA Beta switches

from the behavior of BRA Binomial at t = 1 to the behavior of RA at t = T . As an

indication, note that for t = 1, E[R1] =
∑⌊ d

2
⌋+1

r1=1 r1P(R1 = r1) ≈ ⌊d2⌋ + 1 (BRA Binomial),

while for t = T , E[RT ] =
∑⌊ d

2
⌋+1

rT=1 rTP(RT = rT ) ≈ 1 (RA). In the left panel of Figure 6, we

also illustrate the choices of parameters αt and βt of the Beta distribution as a function of

t for various values of A and B.

Definition 4.1 (BRA Beta). A BRA is called BRA Beta if, in Step 4, Ft is the distribution

where a random variable, Xt ∼ Ft, takes integer parts of numbers sampled from Beta(αt, βt).
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The parameters αt and βt are specified in (4.1).

In the subsequent Figures 7 and 8, we run BRA Beta with some choices of A and B

to illustrate the effect of choosing rt appropriately. Figure 7 shows the evolution of δt

starting from a X̃ with standard uniform marginals, while Figure 8 illustrates that with

Pareto marginals, the tail index is two. Note that A = B = 1 corresponds to the uniform

distribution of the block sizes and is reported as “BRA Unif” in Figures 4 to 5. Figures 7

and 8 provide evidence that the choice of rt in BRA plays an important role, especially

when one wants to achieve quick convergence. We point out that running these calculations

requires only a few minutes on a standard laptop.

Figure 7: Uniform risks: δt in (3.2) with k = 100, T = 2000 and n = 1000. The marginal
distributions are standard uniform. The left (resp., right) graphs show plots when d = 100
(resp., d = 500). The top figures display the δt during the first 100 steps, while the bottom
display after 100 steps. The dashed blue (resp., dash-dotted orange, and solid green) lines
illustrate δt when implementing the BRA Beta with A = 1 and B = 1 (resp., A = 30 and
B = 1, and A = 30 and B = 10).

4.2 Best choices of A and B

To help us analyze the results of BRA Beta, we use a new data visualization method–

grid heatmap in the following. It displays magnitude (δT in our case) as colour in a two-

dimensional matrix, with one dimension representing A and another representingB. Smaller

δT are represented by deeper or darker colour squares and larger δT by lighter colour squares.

See Wilkinson and Friendly (2009) for the definition and history of the heatmap.

In Figure 9, the left (resp., the right) figures show the heatmaps of δT with k = 100,
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Figure 8: Pareto risks: δt in (3.2) with k = 100, T = 2000, and n = 1000. The left (resp.,
right) graphs show plots when d = 100 (resp., d = 500). The top figures display the δt
during the first 100 steps, while the bottom display after 100 steps. The dashed blue (resp.,
dash-dotted orange, and solid green) lines illustrate δt when implementing the BRA Beta
with A = 1 and B = 1 (resp., A = 30 and B = 1, and A = 30 and B = 10). The tail
indexes of the Pareto distributions are 2.

T = 2000, n = 1000 and d = 100 (resp., d = 500). The initial matrix is the X̃ with standard

uniform marginals. A and B vary in the range of [1, 10] with interval 1 in the top graphs

of Figure 9, while they vary in the range of [10, 300] with interval 10 in the left bottom and

[10, 630] with interval 20 in the right bottom. The first-row plots of Figure 9 illustrate that

the bigger A and B, the smaller δT . The exact property holds for Pareto distributions with

tail index two, as shown in the first row of Figure 10. When A = B = 10 in the first rows

of Figures 9 and 10, δT are smallest. The second rows of these figures illustrates that the

smaller δT are distributed in the plots as a rotated 90 degrees “L” shape in both heatmaps.

Moreover, when A = B = 10 in the second-rows of Figures 9 and 10, δT are not in the

rotated “L” shape. δT with A and B in the rotated “L” shape are smaller than δT with

A = 10 and B = 10. Therefore, the optimal parameters of A and B are not in [1, 10]. The

rotated “L” shape moves down left in terms of the number of risks d.

To further study the effect of parameters A and B on accuracy, we plot δT with k = 100,

T = 2000 and n = 1000 on a 3D surface. Similar to the setting of Figures 9 and 10,

Figures 11 and 12 illustrate δT respectively for uniform and Pareto risks when implementing

BRA Beta with various parameters A and B. Specifically, we focus on A,B ∈ [10, 300] and

A,B ∈ [10, 630] with intervals 10 and 20, respectively. It is evident that the optimal A

and B are not located in the range of [1, 10]; see Figures 9 and 10. To investigate the best

choices of A and B in terms of accuracy, the contour plots in the bottom face of the 3D
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Figure 9: Uniform risks: The heatmaps of δT with k = 100, T = 2000 and n = 1000 when
implementing the BRA Beta. The left (resp., right) graphs show heatmaps when d = 100
(resp., d = 500) variables. The top (resp., left and right bottom) figures present the case of
A and B in the range of [1, 10] (resp., [10, 300] and [10, 630]).

Figure 10: Pareto risks: The heatmaps of δT with k = 100, T = 2000 and n = 1000
when implementing the BRA Beta. The left (resp., right) graphs show heatmaps when
d = 100 (resp., d = 500). The top (resp., left and right bottom) figures present the case of
A and B in the range of [1, 10] (resp., [10, 300] and [10, 630]). The tail indexes of the Pareto
distributions are 2.

plots are critical. The colder colour line of the contour represents the better δT . The areas

circled by deep blue lines, which move in terms of d and marginal distributions, are the
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potential locations for optimal A and B. These two figures narrow down our search area

compared to the heatmaps.

Figure 11: Uniform risks: The 3D surface plots of δT with k = 100, T = 2000 and
n = 1000 when implementing the BRA Beta. The left (resp., right) graph, d = 100 (resp.,
d = 500), shows a plot in the case of A and B in the range of [10, 300] (resp., [10, 630]).

Figure 12: Pareto risks: The 3D surface plots of δT with k = 100, T = 2000 and n = 1000
when implementing the BRA Beta. The left (resp., right) graph, d = 100 (resp., d = 500),
shows a plot in the case of A and B in the range of [10, 300] (resp., [10, 630]). The tail
indexes of the Pareto distributions are 2.

We set 0.3 and 0.5 as the ratios of A and d and B and d, i.e., A = 0.3d and B = 0.5d.

For example, we set A = 30 and B = 50 if d = 100 while A = 300 and B = 500 if d = 1000.
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To save space, we only report four cases of combination of two marginal distributions,

i.e., the uniform and Pareto with tail index two, and two dimensions d ∈ {100, 500} in

Figures 9–12. However, one needs a mass of data to find the best choices of A and B

(A = 0.3d and B = 0.5d). For instance, combining different T ∈ {500, 1000, 2000} and d ∈
{100, 500, 1000} gives us nine cases for one marginal distribution. Note that the choices of A

and B presented here are best suited for various cases, including those with different sample

sizes n, dimensions d, marginal distributions, and relatively small numbers of iterations T .

However, if we specify these parameters, alternative values of A and B may potentially

achieve lower values for the δT . Finding such values can be computationally expensive

and time-consuming. Furthermore, if we set a sufficiently large number of iterations T , the

performance of BRA Beta is comparable to other variants of the BRA. Therefore, the choices

of A and B suggested here provide a good trade-off between performance and computational

efficiency.

Figure 13 presents the probability density function of r for the BRA Beta algorithm with

A = 30 and B = 50, considering T = 2000, n = 1000, and d = 100. The plot illustrates the

low probability of obtaining large rt values, i.e. rt ≈ 50, and the high likelihood of obtaining

small rt values, i.e. rt ∈ [1, 10]. This time-dependent behaviour of rt allows BRA Beta to

perform similarly to the BRA Binomial at the beginning and the RA towards the end, as

anticipated in the previous section.

Figure 13: Histogram of the cardinality rt of the subset I when implementing BRA Beta,
A = 30 and B = 50, with T = 2000, n = 1000 and d = 100.

In summary, there is one recommendation for better BRA performance in variance

reduction. We suggest using the BRA Beta with A = 0.3d and B = 0.5d to approximate

sharp bounds in (1.1a) and (1.1b).
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5 Performance evaluation of variance reduction

In the previous sections, we studied four versions of BRA: RA, BRA Binomial, BRAVE and

BRA Beta. In this section, we compare their performances in accuracy, convergence speed

and efficiency when minimizing the variance of row sums.

Boudt et al. (2018) propose the BRAVE in which, for each BRA step, selecting the

number rt in terms of the variance equalization, i.e., Var(
∑

j∈I Xj) = Var(
∑

j∈Ic Xj).

They conclude that for number partitioning problems, the BRAVE outperforms RA, BRA

Binomial and well-known existing number partitioning algorithms such as the greedy al-

gorithm. Specifically, we use the greedy algorithm to find the subset I for BRAVE, i.e.,

BRAVE(greedy)1. See Korf (1998) for an introduction to the greedy algorithm. We propose

the BRA Beta approach in the previous section to solve the same problem and recommend

parameters A = 0.3d and B = 0.5d. We vary the choice of n and d to check the performance

of these algorithms, specifically for n ∈ {10, 100, 1000} and d ∈ {50, 100, 250}. We consider,

A ∈ {15, 30, 75} and B ∈ {25, 50, 125} concerning the size rt in the BRA Beta. We repeat

the experiments in Section 5 of Boudt et al. (2018) but replace the BRAVE+RA with the

BRA Beta. The basic reason for this choice is that if we assess the distribution of BRA Beta

in Figure 13 and its block size changing pattern, BRA Beta with A = 0.3d and B = 0.5d

performs as BRA at the beginning then as RA until the end. Hence, it bears similarity with

BRAVE+RA in this regard. The advantage of the BRA Beta is that it locates the turning

point in switching from BRA to RA automatically instead of manually (ad-hoc choice).

5.1 Accuracy

In this subsection, we use numerical experiments to test the accuracy of our proposed BRA

Beta. The accuracy is assessed by measuring the average log variance of row sums after t

steps, i.e., by monitoring δt.

In Figures 14 and 15, we plot the trajectories of δt in (3.2) in terms of various n and d as

a function of t. The δt is computed by implementing RA, BRA Binomial, BRAVE(greedy)

and BRA Beta. In particular, we set the number of repeating experiments k = 100 and the

maximum number of iterations T = 2000. The solid blue lines show the changes in the δt

of RA, while the dotted orange lines plot that of BRA Binomial. Furthermore, the dashed

green and the dash-dotted red lines correspond to the trajectories of BRAVE(greedy) and

BRA Beta, respectively.

Figure 14 compares the effectiveness of RA, BRA Binomial, BRAVE and BRA Beta for

minimizing the variance of the row sums. We implement those algorithms by initializing

them with a X̃ sampled from standard uniform marginal distributions. The variance of

1We use this type of BRAVE because it is less time-consuming than another BRAVE called BRAVE(KK).
See Boudt et al. (2018) for details.
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Figure 14: Uniform risks: The performance of four BRA-based algorithms on accuracy
δT with k = 100 and T = 2000 for different n and d.

the row sums decreases sharply in the first few steps for all algorithms, regardless of the

numbers of n and d. BRA Beta shows the highest effect of the variance reduction under

these configurations. With T = 2000, the effectiveness of improving the objective function

for all types of BRA decreases when d increases.

Figure 15: Homogeneous Pareto risks: The performance of four BRA-based algorithms
on accuracy δT with k = 100 and T = 2000 for different n and d. The tail indexes of the
Pareto distributions are 2.

Figure 15 displays line plots with the same parameter settings as those in Figure 14, but
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the initial matrix X̃ is sampled from Pareto distributions with a tail index value of 2. In

contrast to the scenarios with uniform risks, the figure indicates a consistent performance

of the rearrangement algorithms on improving the objective function. The effectiveness

of BRA Beta is still the highest after 2000 BRA steps. Figures in the last column of

Figure 15 illustrate that the accuracy improvement of BRA Beta is significant compared

with other BRA-based algorithms when the discretization level is relatively high. Note that

the parameter n has more effect on the magnitude of δt but less in improving the variance

of the row sum.

To further show that the BRA Beta has a dominant performance in accuracy, we use the

standard lognormal and Pareto distributions with different tail index to simulate the input

data; see Figures 16 and 17. Except for sampling data from two extremal distributions

(Figures 14 and 15) indicating that the BRA Beta works well, Figure 16 stands for the

intermediate case. That is, Uniform and Pareto are respective symmetric and heavy-tailed

distributions, while the standard lognormal has a considerable skewness of about 6.18.

Moreover, Figure 17 presents the trajectories of δt with k = 100 and T = 2000 when the

data are sampled from the heterogeneous Pareto risks Xj with tail indexes 1.5 + j−1
d−1 for

j = 1, 2, . . . , d.

The numerical experiments in Figures 14–17 reveal that BRA Beta, using parameters

A = 0.3d and B = 0.5d, outperforms RA, BRA Binomial and BRAVE(greedy) when we

use different distributions to sample the initial matrix. Although the δt values produced

by BRA Beta for t = 1, . . . , T are not consistently lower than those from other algorithms,

δT are consistently the smallest across various n and d values. This aligns with our initial

purpose, which is to design the BRA Beta to obtain the lowest δT . The performance of BRA

Beta is consistent even if we change the distribution and dependence structure for the initial

matrix. The effects of BRA Binomial and BRAVE(greedy) meet the expectations outlined

in Section 3.2. Such a result further confirms that the distribution of the cardinality rt of

subset I influences the effectiveness of BRA. It is evident that the improvement of the BRA

Beta in accuracy is double that of the other algorithms when the risks are heterogeneous

and the portfolio is large; see, e.g., n = 1000 and d = 250 in Figure 17.

5.2 Convergence speed

In this subsection, we test the convergence speed of the BRA Beta with A = 0.3d and

B = 0.5d. The number of BRA steps T measures the convergence speed. Note that we

need to compare the BRA-based algorithms for different T because the series of the block

size rt generated by the BRA Beta is related to T .

Figure 18 illustrates the performance of four BRA-based algorithms in the convergence

speed when k = 100, n = 1000 and d = 100. The initial matrix X̃ is sampled from

a standard lognormal distribution. Nine different T in the range of [300, 1900] with the
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Figure 16: Standard lognormal risks: The performance of four BRA-based algorithms
on accuracy δT with k = 100 and T = 2000 for different n and d.

Figure 17: Heterogeneous Pareto risks: The performance of four BRA-based algorithms
on accuracy δT with k = 100 and T = 2000 for different n and d. The tail indexes of the
Pareto distributions of random variable Xj are 1.5 + j−1

d−1 for j = 1, 2, . . . , d.

interval 200 are selected. Under such a setting, RA has the worst performance, while

BRA Binomial and BRAVE are comparable. It is clear that the BRA Beta has the best

performance in the speed of variance reduction for all nine cases. It is true that even we

use different distributions, such as uniform and Pareto, to sample the input matrix X̃. We

have also done experiments for various types of distributions. However, we omit the plots

for these different distributions to save space. Overall, the variance reduction of the BRA
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Beta with parameters A = 0.3d and B = 0.5d is faster than that of the other BRA-based

algorithms.

Figure 18: Standard lognormal risks: The performance of four BRA-based algorithms
on convergence speed with k = 100, n = 1000 and d = 100 for T in the range of [300, 1900].

5.3 Efficiency

This subsection illustrates the comparable efficient performance of the designed BRA Beta

by comparing the average running times of four types of BRA algorithms.

Table 1 shows the average running times in seconds across 100 experiments for RA,

BRA Binomial, BRAVE(greedy) and BRA Beta starting from the X̃ sampled by a stan-

dard uniform distribution. We only report the case with uniform marginals because the

initial matrix does not affect the execution speed of these algorithms. Except for varying

parameters n ∈ {10, 100, 1000} and d ∈ {102, 103, 104} like in previous experiments, we also

vary the maximum BRA steps T ∈ {50, 100, 300, 500}. It is easy to see and understand

that the running time increases if n and d increase. Unsurprisingly, BRAVE(greedy) is the

most time-consuming algorithm because it searches the equal variance for each BRA step.

By contrast, the proposed BRA Beta is a much less time-consuming algorithm. Its running

time is comparable with RA and BRA Binomial.

6 Application to Value-at-Risk

A problem of considerable interest in risk management and the financial industry is to

determine sharp upper and lower bounds for the VaR at confidence level q of the sum of
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Table 1: The average running times of 100 experiments in seconds for RA, BRA Binomial,
BRAVE(greedy) and BRA Beta in minimizing the variance of the row sums of X̃. The
entries of X̃ are sampled from a standard uniform distribution.

T n = 10 n = 100 n = 1000

d = 102 d = 103 d = 104 d = 102 d = 103 d = 104 d = 102 d = 103 d = 104

RA
50 0.005 0.010 0.066 0.005 0.027 0.722 0.021 1.109 11.695
100 0.008 0.019 0.138 0.010 0.055 1.401 0.041 2.523 23.385
300 0.023 0.058 0.458 0.032 0.167 4.157 0.132 7.408 93.927
500 0.040 0.099 0.744 0.068 0.269 6.802 0.261 9.156 119.725
BRA Binomial
50 0.005 0.011 0.094 0.007 0.032 0.852 0.042 1.305 17.887
100 0.009 0.023 0.193 0.014 0.073 1.614 0.080 2.530 36.535
300 0.025 0.070 0.590 0.041 0.215 4.918 0.207 6.182 109.435
500 0.042 0.124 0.989 0.083 0.409 11.430 0.426 9.543 212.276
BRAVE(greedy)
50 0.126 0.110 0.224 0.685 0.857 2.210 7.558 11.189 33.163
100 0.211 0.223 0.466 1.422 1.754 4.230 15.151 22.140 67.583
300 0.637 0.699 1.430 4.314 5.237 30.961 43.301 90.625 204.918
500 0.983 1.129 2.350 7.810 9.720 36.013 74.472 108.246 669.277
BRA Beta
50 0.008 0.014 0.071 0.010 0.035 0.693 0.027 1.227 11.692
100 0.016 0.028 0.147 0.019 0.074 1.451 0.064 2.421 23.741
300 0.046 0.085 0.468 0.087 0.318 4.583 0.237 5.775 139.836
500 0.075 0.139 0.774 0.108 0.565 10.169 0.316 9.587 199.671

The average times are obtained using Python 3.8 on a Intel(R) Core(TM) i7-10710U CPU and 16 GB
of RAM, running on Windows 10 Enterprise.

d dependent risks, with known marginal distributions of the risk vector (X1, . . . , Xd) but

unknown dependence structure. Specifically, banks are concerned with an upper bound on

the VaR; see Embrechts and Puccetti (2010).

Let us first define the VaR of the sum of d dependent risks at confidence level q.

Definition 6.1 (VaR). The VaR of the sum of d dependent risks at confidence level q

denoted as VaRq(S) is given as

VaRq(S) = inf{x ∈ R|FS(x) ≥ q},

where q ∈ (0, 1), S = X1 + · · ·+Xd and FS(x) is the distribution function of S.

Next, the upper bound of VaRq(S) can be formulated as

M+ = sup{VaRq(S); S = X1 + · · ·+Xd and Xj ∼ Fj , 1 ≤ j ≤ d}.

The upper bound M+ has been studied by Denuit et al. (1999), Puccetti and Rüschendorf

(2012), Embrechts et al. (2013) and Bernard et al. (2017). Note that M+ is a particular

case when ψ(X1, . . . , Xd) := 1X1+···+Xd>x, x ∈ R in Equation (1.1b). Wang et al. (2013)

find the solution of M+ when Fj = F such that the distribution F has a monotone density
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on its support; see Theorem 3.4 and 3.6 therein.

To demonstrate the excellent quality of the BRA Beta, we compare the results of the

BRA Beta with the exact analytic values available in some cases for the upper bound

problem.

When F is standard uniform or Pareto distribution, analytic results are available from

Wang et al. (2013). For the case of standard uniform distributed risks,

M+ =
d(1 + q)

2
, (6.1)

see Example 3.9 in Wang et al. (2013). For the case of Pareto distributed risks with tail

index θ,

M+ = (d− 1)(1− (q + (d− 1)cd(q)))
−1/θ + (1− (1− cd(q)))

−1/θ, (6.2)

where cd(q) is the smallest c ∈ [0, 1d(1− q)] such that

θ

θ − 1
((1−q−(d−1)c)1−1/θ−c1−1/θ) ≥

(
1

d
(1− q)− c

)
((d−1)(1−q−(d−1)c)−1/θ+c−1/θ),

see Example 3.10 in Wang et al. (2013).

Figure 19: Upper bound on VaRq(S), calculated using Equation (6.1), when Xj ∼ U [0, 1].
We set d = 50 (left) and d = 100 (right). Moreover, T = 2000 and n = 105 for BRA Beta.

To apply the BRA Beta with A = 0.3d and B = 0.5d to solve M+, we simulate a n× d

matrix Y = (y1, . . . , yd) where yj = (F−1
j ( 1

n+1), . . . , F
−1
j ( n

n+1))
T denotes the jth column,

j = 1, . . . , d. Then the input matrix for BRA is a (1−q)n×d matrix X̃ = (x1, . . . , xd) where

xj = (F−1
j ( nq

n+1), . . . , F
−1
j ( n

n+1))
T . The upper bound on VaRq(S) equals the minimum value

of row sums of X∗.

In Figure 19, we plot the upper bounds on VaRq(S) when d = 50 (left) and d =

100 (right) uniformly distributed risks. M+ at each confidence level q is computed either

analytically or numerically. The solid line illustrates the analytic upper bounds calculated

by Equation (6.1), while the dotted scatter plot represents the numerical upper bounds
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from BRA Beta. We set a discretization level of n = 105 and a maximum number of BRA

steps T = 2000 for BRA Beta. It is evident that the BRA Beta with A = 0.3d and B = 0.5d

obtains reliable approximated upper bounds for VaRq(S).

Figure 20: Upper bound on VaRq(S), calculated using Equation (6.1), when d = 50 and
Xj ∼ Pareto(2). We set T = 2000 and n = 105 for BRA Beta.

In Figure 20, we plot the upper bounds of VaRq(S) with the same parameter settings as

the last figure, but Xj ∼ Pareto(2). The analytic bounds are computed by Equation (6.2).

The figure verifies the previous statement that BRA Beta works efficiently for finding the

upper bound of VaRq(S). Similarly, the quality of the BRA Beta for the lower bound

problem is expected to be excellent.

While Wang et al. (2013) solve the upper bound problem under specific assumptions, a

general solution for explicit values is challenging. However, our designed BRA Beta is an

improved algorithm that can solve M+ without constraints on the marginal distributions.

Table 2 reports the numerical upper bounds on VaRq(S), obtained by implementing BRA

Beta, when d = 50 heterogeneous risks and Xj ∼ Pareto
(
1.5 + j−1

d−1

)
, j = 1, . . . , d.

Table 2: Upper bound on VaRq(S), approximated using BRA Beta when d = 50 and

Xj ∼ Pareto
(
1.5 + j−1

d−1

)
. We set T = 2000 and n = 105 for BRA Beta.

M+ M+

q=0.90 346.140 q=0.95 501.839
q=0.91 366.194 q=0.96 565.822
q=0.92 390.015 q=0.97 660.659
q=0.93 418.933 q=0.98 822.231
q=0.94 455.037 q=0.99 1195.758
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7 Conclusion

In this paper, we recall several versions of the block rearrangement algorithm and investigate

the factors that impact its convergence speed and accuracy performance. These algorithms

enable us to approximate sharp bounds for the expectation of some functions of dependent

random variables Xj , j = 1, . . . , d, where Xj ∼ Fj .

To enhance the efficiency of the algorithm, we propose an improved version of BRA,

named BRA Beta, which uses a time-dependent cardinality of the chosen subsets I ⊂
{1, . . . , d}. For the choice of block sizes, BRA Beta utilizes Beta distributions with two

dynamic parameters, αt and βt, controlled by A = 0.3d and B = 0.5d. The BRA Beta

performs similarly to the BRA Binomial at the beginning and more like the RA until the end.

Specifically, when the number of risks is relatively high, the BRA Beta outperforms the RA

from Puccetti and Rüschendorf (2012), the BRA Binomial from Bernard and McLeish (2016)

and Bernard et al. (2018), and the BRAVE(greedy) from Boudt et al. (2018). Furthermore,

the proposed BRA Beta algorithm is less time-consuming than BRAVE(greedy). The BRA

Beta is applied and tested for the problem of approximating sharp bounds on VaR, showing

improved convergence speed and accuracy performance w.r.t. the other variants of (B)RA

in this kind of application.
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Bernard, C., L. Rüschendorf, and S. Vanduffel (2017). Value-at-risk bounds with variance con-

straints. Journal of Risk and Insurance 84 (3), 923–959.

Boudt, K., E. Jakobsons, and S. Vanduffel (2018). Block rearranging elements within matrix columns

to minimize the variability of the row sums. 4OR 16 (1), 31–50.

Chong, K. M. and N. Rice (1971). Equimeasurable rearrangements of functions. Number 28. Queen’s

University.

Day, P. W. (1972). Rearrangement inequalities. Canadian Journal of Mathematics 24 (5), 930–943.
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