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Maximally Selected Rank Statistics

for Dose-Response Problems

SUMMARY: We consider the bivariate situation of some quantitative, ordinal,
binary or censored response variable and some quantitative or ordinal exposure
variable (dose) with a hypothetical effect on the response. Data can either be the
outcome of a planned dose-response experiment with only few dose levels or of an
observational study where, for example, both exposure and response variable are
observed within each individual. We are interested in testing the null hypothe-
sis of no effect of the dose variable vs. a dose-response function depending on an
unknown ’threshold’ parameter. The variety of dose-response functions considered
ranges from no observed effect level (NOEL) models to umbrella alternatives.

Here we discuss generalizations of the method of Lausen & Schumacher (Bio-
metrics, 1992, 48, 73-85) which are based on combinations of two-sample rank
statistics and rank statistics for trend. Our approach may be seen as a general-
ization of a proposal for change-point problems. Using the approach of Davies
(Biometrika, 1987, 74, 33-43) we derive and approximate the asymptotic null
distribution for a large number of thresholds considered. We use an improved Bon-
ferroni inequality as approximation for a small number of thresholds considered.
Moreover, we analyse the small sample behaviour by means of a Monte-Carlo study.

Our paper is illustrated by examples from clinical research and epidemiology.



Keywords: Changepoint problem; Dose-response problem; Improved Bonfer-
roni inequality; Logrank test; Maximally selected rank statistics; Threshold; Trend

test; Upcrossing.
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1 Introduction

The statistical analysis of dose-response relationships involves various aspects. Meth-
ods may be characterised by the measurement scales involved, by the functional form
of the considered relationships and by the study design. We assume a general bi-
variate situation of some quantitative, ordinal, binary or censored response variable
and some quantitative or ordinal dose variable with a hypothetical effect on the
response. Figure 1 shows three different functional forms which are discussed in our
paper:

(a) A simple cutpoint model, where an unknown cutpoint defines a normal and a
risk population. The functional relationship is monontone, but not continuous.

(b) A monotone and continuous relationship, which is also characterised by a thresh-
old. The model assumes no effect below the threshold and a monontone increase
is assumed above the threshold. Consequently, the threshold can be seen as a non
observed effect level (NOEL) and the model is called NOEL model.

(c) A monotone increase is assumed below a certain threshold in the dose variable
and a decrease is assumed above this value. This continuous model is often called
an umbrella type model and the threshold umbrella point.

Our approach covers also the mirrored model situations which can be defined by
multiplying the response and/or dose variable by -1. But we do not discuss an
analysis of one side of the umbrella model only (cf. Simpson & Margolin, 1986) or

models which involve more than one structural parameter (cutpoint, NOEL, um-
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brella point or change-point); e.g. a simple example of such a model is the epidemic
wave model (Siegmund 1986, Sec. 3.6.). Recently Chuang-Stein & Agresti (1997)
reviewed traditional tests for detecting a monotone dose-response relationship with
ordinal response data, which are based on general correlation or association statis-

tics.

Figure 1 - about here -

Here, we discuss the three possibilities (i, ii, iii) of designs for dose-response
modelling:
(i) controlled planned experiment with a dose or treatment variable;
(ii) randomly observed exposure values;
(iii) cumulative doses over time.
Under design (ii) and (iii) a continuous dose variable may result in a large num-
ber of possible thresholds. Consequently, we can model the threshold selection as
stochastic process and we investigate a modification of the method of maximally
selected rank statistics (section 3). We derive and propose approximations of the
asymptotic distribution when there is no effect on the response variable. In section
4 we analyse the small sample behaviour by means of a Monte-Carlo simulation.
Further below we analyse two examples: (section 5.1.) the binary response in a
case-control study on electromagnetic fields and risk of cancer in children (cf. Olsen
et al., 1993; Schulgen et al., 1994) and (section 5.2.) the possibly censored recur-

rence free survival time as response variable in a clinical heart arrhythmia study
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(Hohnloser et al., 1987).

We consider the bivariate sample (X1,Y)), ..., (Xn, Yy) of size N; i.e. stochastically
independent bivariate observations. X denotes the dose or exposure and Y denotes
the response. We state our model of a dose-response relation in terms of the con-
ditional distribution function of the response Y given an exposure or dose level z;
ie.

FY\X:w(y) = prg(m)(Y < y) ) (1)

where Fy|x—, denotes the conditional distribution function and pry(,) the probability
indexed by g(x). This formulation allows a wide range of dose-response relationships.
For example the location shift model of Lausen & Schumacher (1992) is given by
g(xz) — g(z') = 0 with z < p and 2’ > p where p denotes the cutpoint and € the
location difference.

The null hypothesis of no effect of the dose or exposure on the distribution of the

response is stated by
FY|X:$(y) = Fy|x=o (y) ,for all y,, t'€R. (2)

The null hypothesis can also be reformulated as g(z) = constant for all z € IR.

2 Rank Tests on Dose-Response Relation

Maximally selected rank statistics proposed by Lausen & Schumacher to test the

null hypothesis g(x) = constant are based on a selection of linear rank statistics Sy
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(cf. Hajek & Sidak, 1967, p.61):

Sq = Zl ca(Qi)a(R;) (3)

where R = (Ry,..., Ry) denotes the rank vector of the response variable Y; @ =
(@1, -.., @n) the rank vector of the dose or exposure variable X; a = (a(1), ...,a(N))
is some score vector and ¢; = (c4(1), ..., cqa(IN)) is a regressor vector depending on a
threshold d. In the case of tied or censored observations, a(i) denotes the midscores
or the scores given by the logrank statistic. Avoiding higher order indices we use
a(R;) and not ag,.

Lausen & Schumacher (1992) use a regressor vector ¢; which describes a two sample
rank statistic. We give three (A, B, C) wellknown examples for regressor vectors
corresponding to the three models (a) - (c) (cf. figure 1):

(A) c¢i(i) = Iiz@-1()>ay » @ being the antiranks of @ and If()>q; denoting an
indicator function of the event. This leads to the two sample cutpoint model of
Lausen & Schumacher (1992);

(B) ¢f (1) = (i = ma) " Lino-1(i))>dy » where mg = N — 3 Iizg-1(i))>a} » IS & regressor
vector which may be used for NOEL alternatives (cf. e.g. Cox, 1987, Ulm, 1991,
Meister, 1994, Chen, 1999a, Hothorn, 1999, and Bender, 1999);

(C) ¢§ (i) = (mq—1)? is plausible for umbrella alternatives (cf. Mack & Wolfe, 1982,
Hettmansperger & Norton, 1987, and Chen, 1999b).

With mg = 0 and Wilcoxon scores we observe that a special case of example (B) is
the Spearman rank test for independence.

The dependence of the regressor vector on some threshold d allows us to anal-
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yse various dose-response alternatives. But assuming that the true threshold pa-
rameter g is unknown we are interested in a formal test procedure of the dose-
response relationship considered. Consequently, we apply the approach of Lausen
& Schumacher (1992) and use the standardized linear rank statistic Ty = (Sq —
E(S4la, X))/ (var(Sqla, X))*/2. The maximally selected rank statistic M (e, ;) is
defined as

M = T. 4
() = max [T, (@)

where d; = Fy'(e1), dy = Fy'(e), Fy' denotes the inverse of the empirical distri-
bution function of X and 0 < ¢; < €3 < 1 are arbitrarily chosen. A similar test
statistic is suggested for change point problems in Lombard (1987, eq. 2.4. and
5.1.).

In the sequel we call a maximally selected rank statistic (eq. 4) with regressor vector
(A) cutpoint statistic, with regressor vector (B) NOEL statistic and with regressor

vector (C) umbrella type statistic.

3 Asymptotic Null Distribution

3.1 Large Number of Thresholds

Here the asymptotic is derived when the sample sizes converge to inifinity. For

clarification we add the index N at the scores and the statistics, but not at the ranks
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and antiranks. We follow the derivation of Lausen & Schumacher (1992). Assuming
that the scores are standardized, i.e. YN, ax(i) = 0 and ¥Y, an(i)? = 1, then,

when maxyi<;<n} an(i) =+ 0 as N — oo, the processes

v
n(t) = ; an(R(Q (7))

converge in distribution to a standard Brownian Bridge B, (see Billingsley, 1968,

pp-208-214). Since

N

Sna = Z Qz CLN
=1
= 2 o

X;<d
NFy(d)

= Z (@)

= Bn(Fn(d))

it follows by (4) that My/(e1, €2) converges weakly to
SUDscle 0] [ Bo(8)|/(#H(1 — 1))/? as N — oc.

An asymptotic approximation of the distribution function F'(b) = pr(M (e, €3) <

b) is given by Miller & Siegmund (1982, eq.8):

(e, <) = o)+ (1 1o (L) o) o (20)).

(1 —€9)eq

Here we go a step further and derive for NOEL regressors cZ the asymptotic

distribution of the maximally selected rank statistic under the null hypothesis. The
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process Ty with ¢ as regressor functions can be considered as a smooth form of the

process Tt with regressors ¢/. This relation carries over to the limit.

Let cF(j) = (7 — ma) Lao-1g)sap Ma = N — Zi Liao-16))>ay and Syg =
Y, ¢Z(Qi)an(R;). Then Syp-1(, converges weakly to fpl By(t)dt as a function of
p. Let Txg = (Sna — E(Snala, X))/ (Var(Syala, X))/ and for 0 < e; < € < 1
let Ly (e1,€2) = maXge(a, ap) |Tva| where d; = Fy'(i), i = 1,2. Then Ly(ey,¢€2)
converges in distribution to supyeje,,]| J, Bo(t)dt/var(f, By(t)dt)"/?| as N — oo
(for details see section 8.1.). The results of Davies (1987) then allow an estimate of
the distribution of the limit statistic. A somewhat lengthy calculation (see section

8.2.) yields for K (€1, €2) = SUp e, o] | [, Bo(t)dt/var(f, Bo(t)dt)'/?| , that

€1,€2

ple) e 120\
pT(K(GbGQ) > C) <2 (q)(_c) + (27.‘.)1/2 / ((1 _ 3p2 + 2p)2> dp) (5)

:2(¢(_c)+ 2lc) [tanl{_(sty/z}_gvnanh1{%/2}]62). (©

(2%)1/2 €1

Table 1 gives (1 — a)-quantiles of the approximation of the asymptotic distri-
bution. For umbrella regressors ¢§ we can use a similar argument as for NOEL

regressors twice and can derive an approximation via Davies (1987, eq.2.1) again.

- Table 1 - about here -
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3.2 Small Number of Thresholds

The asymptotic k-variate normal distribution for k& potential thresholds, z,..., zx
and zyp = —o0, 2,41 = 00, considered is given by standard arguments, Noether
condition (see above) and (Fnx(zj+1) — Fnx(2j)) N — oo for j = 0,...,k with
N — oo. We approximate the asymptotic k-variate normal distribution with
the improved Bonferroni inequality of Hunter and Worsley (Hunter, 1976; Worsley,

1982, 1983):

pr(M(er, €) < b) ~ 2(1 — ®(b)) + ZF! D(1y, 1i41),

where the realisation of M (e, €) equals b, 2; < ... < z; denotes the cutpoints
which define the splits considered, /; denotes the size of the subgroup with values
in X less or equal to z;, and we get D(i,7) = (2/m)°%p(b) (ti;; — (b*/4 —1)(ti;)?/6),
¢ denotes the standard normal probability density function and ¢ the standard
normal distribution function (c.f. Worsley 1983, eq. 6.4.); for the cutpoint model

regressors c; we get for the correlation term ¢;; = (1 —i(n — j)/((n —4)j))

0.5
Schlittgen (1999) suggests an exact computation based on the asymptotic k-variate
normal distribution. The results of James et al. (1987) provide an other possibility

to approximate the asymptotic k-variate normal distribution. Tang et al. (2000)

discuss exact linear trend tests in dose-response studies.
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4 Small sample behaviour

Koziol (1991) and Halpern (1999) suggest rapid methods to compute the permu-
tation distribution for a binary response variable. We analyse the small sample
behaviour by using results of a Monte-Carlo study for a continuous response vari-
able. We use the design and adapt the programs of the study in Lausen & Schu-
macher (1992). Consequently we chose the uniform distribution for the dose X
and the standard normal distribution for the response Y and 10000 Monte-Carlo
replications (more details are given in Lausen & Schumacher 1992). We include
three different NOEL statistics (Median-, Wilcoxon- and log-rank-scores) and one
cutpoint statistics (maximally selected two-sample t-test, see Lausen & Schumacher
1992). The maximally selected two-sample t-test is included to allow comparisons
with the simulation results of cutpoint statistics and is the best parametric cutpoint
test statistic under our simulation design. The simulation results of Lausen & Schu-
macher (1992) show that the performance ot the maximally selected Wilcoxon test
statistic and the maximally selected two-sample t-test is similar. For example one
gains relatively little power by using the parametric statistic.

Figure 2a shows the upper part of the distribution of the simulated NOEL statistic
with Wilcoxon scores for the interval (.1, .9) and for different sample sizes. Moreover,
the approximation (eq. 5) of the asymptotic distribution is given. The figure shows
that the approximation is conservative. Table 2 gives simulated and approximated

(n = 00) 95% quantiles for the sample sizes, intervals and test statistics considered
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under the null hypothesis. The given results underline, that the selection effect is
smaller compared with the cutpoint statistic, and that the approximation formula

(eq. b) of the asymptotic distribution is conservative, but sharp enough to be useful.

Table 2 - about here -

Figure 2b-d gives the simulated power for three alternatives considered: NOEL
model (g(z) = B(x — p)I1z>u3, 1 = 0.5, B constant slope parameter), linear model
(9(z) = Bz,  constant slope parameter), and cutpoint model (g(z) = 0l (z>u, 4 =
0.5, 0 location difference). The sample size is n = 50. The effect parameter de-
scribes the slope of the linear part of the NOEL model, the slope of the linear model
and the location difference of the cutpoint model. Figure 2b-d shows the simulated
power for three different NOEL statistics (Median-, Wilcoxon- and log-rank-scores)
and for the cutpoint statistic (maximally selected two-sample t-test). All tests use
the simulated quantiles under the null hypothesis and the selection interval (.25,
.75). We observe that the NOEL-statistics (Wilcoxon- and logrank-scores) have the
highest power under the NOEL-model (figure 2b). Under the linear-model (figure
2¢) the NOEL-statistic and the cutpoint statistic have a similar simulated power.

Under the cutpoint model (figure 2d) the cutpoint statistic performs best.

Figure 2(a-d) - about here -
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5 Examples

5.1 Electromagnetic Fields and Risk of Cancer in Children

Olsen et al. (1993) observed an association between the binary response occurence
of all major types of childhood cancer and exposure to magnetic fields from high
voltage installations. Table 3 gives the relevant data. This finding was based on
an outcome-oriented cutpoint and on the maximally selected chi square statistic
(Schulgen et al. 1994). But the continuous NOEL model is an alternative model
of the dose-response relationship of average exposure to electromagnetic fields (unit
pTesla) and risk of cancer in children. Figure 3 shows the process of the maximally
selected chi square test statistics and the NOEL statistic with Wilcoxon scores.
Having about 1 % exposed we can restrict the selection between the 99% and 99.9%
quantiles of the exposure distribution; i.e. 0 pTesla to 0.51 pTesla. We get for the
maximally selected qui square statistic 3.13 (P = 0.023) at the cutpoint 0.45 pTesla
and for the NOEL statistic 3.27 (P = 0.004) at the cutpoint 0.45 pTesla. The con-
tinuous NOEL model is a better approximation of a plausible biological model (for
more details see Schulgen et al. 1994). We observe only 6 cases and 2 controls above
the threshold 0.45 uTesla, therefore interpretations of this finding have to be very

cautious.
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Table 3 - about here -

Figure 3 - about here -

5.2 Recurrence Free Survival in Heart Arrhythmia Study

The study of Hohnloser et al. (1987) shows that the left ventricular ejection frac-
tion has some predictive power for patients with malignant ventricular arrhythmias.
Lausen & Schumacher (1992, Table 1) provide a subset of the study data and an
analysis using the cutpoint logrank statistic. Figure 4 gives the empirical processes
of the NOEL-logrank statistic with a monotone increase for values greater than the
threshold and of the NOEL logrank statistic with a monontone decrease for values
less than the threshold. Moreover, the process of the cutpoint logrank statistics is
shown. Restricting the selection between the 5 % and 95 % quantiles of the left ven-
tricular ejection fraction we get for the NOEL-logrank statistic 3.69 (P = 0.001) with
a monotone increase for values greater than the threshold, for the NOEL-logrank
statistic 3.41 (P = 0.003) with a monotone decrease for values less than the thresh-
old and for the cutpoint logrank statistic 3.61 (P = 0.012). The Spearman rank test
for independence is a special case of the NOEL statistic (cf. section 2), consequently
the pattern of the processes of figure 4 may be interpreted as an indication, that a

strictly monotone relationship provides a better model for these data.
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Figure 4 - about here -

6 Discussion

In this paper, we suggest and investigate a nonparametric statistical analysis of
dose-response problems with maximally selected rank statistics. We introduce the
approach for a large class of dose-response models and for different scales of the dose
and response variable. We show that the asymptotic null distribution of the NOEL
statistic is the supremum of the absolute value of the normalized integral over a
Brownian bridge. Moreover, we derive an approximation formula for the asymptotic
null distribution. Results of a Monte-Carlo study show that the approximation
formula is sharp and the NOEL statistic is powerful under the NOEL model.
Contal & Quigley (1999) use a cutpoint model and investigate maximally selected
logrank statistics with a Brownian Bridge asymptotic. Moreover, they discuss the
effect of the amount of censoring and the prognostic value of age for breast cancer
data of Institut Curie (Paris, France).

Rabinowitz & Betensky (2000) introduce maximally selected McNemar’s statistics.
Betensky & Rabinowitz (1999) discuss a cutpoint statistics for K x 2 tables, prove
that the asymptotic null distribution is a multidimensional Brownian bridge and give
an approximation via results of James et al. (1987). It should be possible to extend

our approach using results of Davies (1987) for chi-square statistics with k£ degrees
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of freedom to derive a similar approach for dose-response models of a multivariate
response variable.

Concerning estimation of the threshold and effect parameters it should be noted
that effect estimation conditional on the threshold estimation given by a maximally
selected statistic is often biased (cf. Lausen & Schumacher 1996).

In summary our nonparametric approach is an improvement of the cutpoint model,
because it allows the analysis of a monotone dose-response relation which is often
a plausible model of the dose-response relation within a subject (cf. Schulgen et al.
1994). Such a nonparametric analysis is especially important, when we have not
sufficient data, i.e. too much noise or unexplained variation, to support estimates

of a specified parametric model or a data analysis, guided by smoothing techniques.
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8.1 Convergence of the NOEL-statistic

Let Sya = 2N, ¢B(Q;)an(R;) denote the statistic as introduced in section 3.1.. We

rewrite Syy/N as a Rieman-integral. Let D = Ro Q™', where R denote the ranks

of Y and @) the ranks of X. Then we have

SNd/N

(R
M=1M=

~
I
—

Il
M=

ci (Q:) an(R;i)/N

<
I
—

(Qi — ma) Itx,;>aqy an(Ri)/N

(7 —ma) Iixg-1ysaqy an(Dj)/N

J

T.
2 -

= > (j—ma)an(D;)/N

Jj=mq+1

= g: (i GN(Dj)/N>

j=mg+1 i=mg+1

By interchanging summation and noting that the ay’s are centered we get further

SNd/N =

‘ g: (i aN(Dj)/N>

i=mg+1 j=t
N N 1—1
Y | X an(Dj)/N =3 an(D;)/N
i=mg+1 j=1 j=1
N 1—1
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We claim at first, that

~
|
—

Hy(p) := __[Z] an(D;)/N

j=1

as a function of p converges to fpl By(t)dt in D[0,1]. DI[0,1] denotes the usual
Skorokhod-space (see Billingsley 1968, p. 109). This is a consequence of the fact

mentioned above, that By (t) = Zg? ay (D;) converges weakly to a Brownian bridge

By(t) in D[0,1]. For z € DI[0,1] denote by T'(x) the function p — fpl z(s)ds. T
defines a mapping from DI0,1] to C[0,1] (C[0,1] denotes as usual the space of
continuous functions on [0, 1]). 7 is a continuous mapping when restricted on C|0, 1].
Since the Brownian bridge has continuous pathes with probability one, we obtain by
a classical convergence result for mappings (see Billingsley 1968, p. 30) that 7'(By)

converges to T'(By) in distribution in C[0, 1]. Further it holds that
rn = sup [T(Bw)(p) = Hy(p)| = 0 (7)

in probability as NV — oco. This yields the first claim. We show now that Syp-1(,) /N
as a function of p converges to fpl By(t)dt in D[0,1]. Since myg = NFy(d), (Fn

denotes the empirical distribution function of X') we have

SNF*I(P)/N = HN(FN(F_I(p)))

then we get by the triangle inequality

IN
wn
=
=
S
2
=
.
=
+
O
S
2

IN
wn
=
T
=
B!
S
|
ASH
wn
=
T
e
2
=
_{_
)
3
=2
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The second term converges to zero by (7). The first term also does. The first factor
converges to zero by the Clivenko-Cantelli lemma. The second term stays bounded
in probability by the tightness of By. This shows the second claim.

The other statements follow by similar standard arguments.

8.2 The asymptotic approximation of Davies

We consider the limit functional Z(p) := [ pl By(t)dt where By is a standard Brownian
bridge on the interval [0, 1]. As a function of p it is a Gaussian process with absolut
continuous paths and zero mean. Its covariance function is given by wv(p, p/) =
cov(Z(p), Z(p')) = (1/12)(1 — p')*(1 — 3p* + 2¢') when p < p'.

This can be seen as following:

Since E(Z(p)) =0forall0 <p<1

[y

S

( /p / 1) Bo(t')dtdt')
- /l/lE (t'))dtdt’
-

The calculation of the integral on the right hand side yields the expression for the

v(pp) =

1 1
/ tAE)YA =tV t)dtdt
p

A

covariance function.

Let k(p, p') denote the correlation function of Z(p). The second partial derivative
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can be calculated as

—12p
1—3p2+2p)? "~

Oy, o= = ¢

Together with the result of Davies (1987) (eq. 2.1.) this leads to the right hand side

of formula (5) above, which turns out to coincide with formula (6).
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10 Legends

Figure 1: Typical functional forms of dose-response relationships.
Cutpoint model (solid line), no observed effect level model (NOEL) (dotted line),

umbrella type model (dashed and dotted line).

Figure 2: Small sample behaviour.

Under the null hypothesis:

(2a) Upper part of the distribution of simulated NOEL statistic with Wilcoxon scores
for the selection interval (.1, .9).

Under the dose-reponse alternatives:

(2b) NOEL model, (2¢) linear model, (2d) cutpoint model.

Figure 3: Average exposure and risk of cancer in children.
Process of NOEL statistic with Wilcoxon scores (dotted and dashed line), and pro-
cess of maximally selected chi square statistic (solid line). Selection between 0 pTesla

(99% quantile) and 0.51 pTesla (99.9% quantile.

Figure 4: Left ventricular ejection fraction and recurrence free survival time.

Process of the NOEL-logrank statistic with monotone decrease for values less than
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the threshold (dotted and dashed line), with monotone increase for values greater

than the threshold (dashed line), and process of cutpoint logrank statistic (solid line).

11 Tables

Table 1: Approximated (1 - «) quantiles of asymptotic distribution.

(1 - «) quantiles of asymptotic distributions

absolute asymptotic quantile for interval

a normal (4,.6) (.25,.75) (.1,.9) (.05,.95) (.01,.99) (.4,.9)

100 1.645 1.784  1.957 2.134  2.220 2.358 2.073
.050 1.960 2.097  2.261 2.424  2.503 2.630 2.368
025 2241 2376  2.532 2.686  2.759 2.877 2.633

.010 2.576 2,708  2.856 2,999  3.067 3.176 2.950
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Table 2: Simulated and approximated 95 % quantiles.

€ €9 n t noel-Med noel-Wile noel-LR
04 06 10 |2.90|2.16 2.00 1.93
04 06 20 |2.59]2.08 2.04 2.01
04 0.6 30 |256|2.07 2.08 2.06
04 0.6 50 |255]214 2.12 2.11
0.4 0.6 100 | 2.55 | 2.11 2.14 2.11
04 0.6 200|255 2.12 2.12 2.10
04 06 oo |2.56]2.10 2.10 2.10
0.25 0.75 10 | 3.38 | 2.16 2.11 2.10
0.25 0.75 20 | 295 2.23 2.14 2.13
0.25 0.75 30 | 2.89 ] 2.20 2.20 2.18
0.25 0.75 50 | 2.81 ] 2.21 2.22 2.19
0.25 0.75 100 | 2.76 | 2.24 2.24 2.22
0.25 0.75 200 | 2.79 | 2.22 2.23 2.24
0.25 0.79 oo | 2.83 ] 2.26 2.26 2.26

27
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€1 € N t noel-Med noel-Wilc noel-LR
0.1 09 10 | 3.66 | 2.16 2.09 2.20
0.1 09 20 |3.22]2.23 2.25 2.29
0.1 09 30 |3.10]2.21 2.28 2.30
0.1 09 50 |3.01]2.31 2.32 2.34
0.1 0.9 100 | 3.01 | 2.36 2.38 2.40
0.1 0.9 200 |2.96 | 2.36 2.38 2.38
0.1 09 oo |3.05] 242 2.42 2.42
04 09 10 |3.32]2.16 2.06 2.13
0.4 09 20 |3.00]2.20 2.20 2.24
04 09 30 |289]221 2.24 2.28
04 09 50 |2.83|224 2.26 2.28
0.4 0.9 100 |2.83 | 2.31 2.33 2.34
0.4 0.9 200 |2.86]2.33 2.35 2.36
04 09 oo |2.83]2.37 2.37 2.37




11 TABLES

Table 3: Danish population based case control study: Average exposure.

cases | controls

Non exposed (Exposure =0 p7") | 1693 | 4750

Exposed (Exposure > 0 uT) 14 38

total 1707 | 4788

Ordered exposure values (u7") of cases

0.03, 0.04, 0.04, 0.08, 0.12,
0.12, 0.20, 0.21, 0.51, 0.73,

1.00, 1.59, 1.66, 1.72;

Ordered exposure values (uT") of controls

0.03, 0.04, 0.04, 0.04, 0.04,
0.04, 0.04, 0.05, 0.05, 0.06,
0.06, 0.06, 0.06, 0.07, 0.07,
0.08, 0.08, 0.09, 0.14, 0.15,
0.15, 0.17, 0.19, 0.20, 0.21,
0.23, 0.24, 0.28, 0.30, 0.30,
0.30, 0.32, 0.32, 0.34, 0.35,

0.45, 0.73, 0.83;




