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Abstract. Let z1,13,... be a (not necessarily random) infinite 0-1 sequence.
We wish to sequentially predict the sequence. This means that, for each
n > 1, we will guess the value of zn41, basing our guess on knowledge
of £1,23,...,zn. Of interest are algorithms which predict well for all 0-1
sequences. An example is the Blackwell algorithm discussed in Sect. 1. In
Sect. 2 we introduce a generalization of Blackwell’s algorithm to the case of
three categories. This three-category algorithm will be explained using a ge-
ometric model (the so-called prediction prism), and it will be shown to be a
natural generalization of Blackwell’s two-category algorithm.

The Blackwell algorithm has interesting properties. It predicts arbitrary 0-1
sequences as well or better than independent, identically distributed Bernoulli
variables, for which it is optimal. Such Bernoulli variables are consequently
the hardest to predict. Similar results hold for the three-category generaliza-
tion of Blackwell’s algorithm.

1 The Blackwell Prediction Algorithm

Let z1,z3,... be an infinite 0-1 sequence. A prediction algorithm py,ps,... is a
random infinite 0-1 sequence, with pn4; being the predicted value of z,,;. The
value of pn41 may depend on z,,...,z, and also on other random variables (so-
called randomizers) which are independent of the z’s. Let ¢; = 1{p; = z;} be the
indicator function of the event that the i** observation z; is correctly predicted. Let

n
zZ, = % 2 zi be the relative frequency of “1” in the sequence z;,z3,... up to n,
i=1
n
and let €, = % Y~ e; be the relative frequency of correct prediction.

=1
We next consider a plausible deterministic prediction scheme. Let
1z, >
P = (1)
0ifz, <

=

=

This algorithm has both strengths and weaknesses.
If z1,2,,... is a sequence of independent Bernoulli (p) random variables, then
the law of large numbers implies for (p2,n > 1) that

€n — ma.x(p, 1- P) (2)
* We thank T. Sellke for translating and helping to revise this paper.
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as n — oo for every p, 0 < p < 1. The (p3, n > 1) algorithm is asymptotically optimal
for independent Bernoulli (p) variables. If the value of p is known, for example
with p > %, then the best strategy always predicts “1” and attains &, — p. If
p< % is known, then &, — 1 — p, providing one always predicts “0”. However, the
deterministic algorithm (1) fails for the cyclic sequence 1, 0, 1,0, 1,0, ... since
there &, = 0 for n > 1.

The Blackwell algorithm does not have such weaknesses. We explain it using

Fig. 1. Let

fn = (En,2n) €[0,1]? and S = {(z,y) € [0,1]*|y > max(z,1 - z)}.
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Fig.1.

In Fig. 1, let Dy, D3, and D3 be the left, right, and bottom triangles, respectively,
in the unit square, so that D; = {(z,y) € [0,1]*|z < y < 1—z}, etc. When u, € Ds,
draw the line through the points p, and (}, 1), and let (wn,0) be the point where
this line crosses the horizontal axis. The Blackwell algorithm chooses its prediction
Pns1 on the basis of yn according to the (conditional) probabilities

0 ifu,eD
P(Bap1=1)=(1 ifus €Dy
W if[lnEDa.

When pq, is in the interior of S, fnt1 can be chosen arbitrarily. Let p1 = 0.
In what follows, d denotes Euclidean distance in IR?, and d(z, A) is the distance
from the point z to the set A.
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Theorem1 For the Blackwell algorithm applied to any infinite 0-1 sequence ri,
£3,..., the sequence (pn;n > 1) converges almost surely 1o S, i.e.

d(pn, S) — 0 as n — oo, almost surely. (3)

The conclusion of the theorem has a minimax character. The remarks following
(2) show that one cannot do better than (3) for iid Bernoulli variables. For every
other 0-1 sequence the Blackwell algorithm is (asymptotically) at least as successful.
Consequently, iid Bernoulli variables are the hardest to predict.

The convergence behavior of the Blackwell algorithm can be explained geomet-
rically. We view the convergence of (un;n > 1) to S as the approach of a point
sequence toward a convex set.

Case 1. p, is in the interior of D;.

Here P41 = 0. In general we have

Bntl = pn + (xn+1 —Zn,n41 — En)~ (4)

1
n+1
Since P41 = 0, (Zn41—Zn, ent1—En) equals (—Z,,1-&,) when 2,41 = 0 and equals
(1-%,,—&,) when 2,41 = 1. These two vectors are shown in Fig. 2 emanating from
the point u,. Let d, = d(un,S). An argument using similar triangles shows that
dny1 = 3 +1d (Note that pn4+1 € D; whenever puy, is in the interior of D;.)
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Fig. 2.

Case 2. py, is in the interior of Dj.

The arguments for Case 1 apply.
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4

Fig. 3a.

Case 3. py, € Ds.

We discuss several possibilities for randomization using the following figures.
a) If we set pny1 = 0 and observe zn41 =1, then pp41 will be farther from S than
pn was. See Fig. 3a.
b) Suppose the prediction of zn41 is based upon tossing a fair coin.
The vectors emanating from y,, in Fig. 3b are the conditional expectations of (Tn41—
Zn,entl — En) When Z,41 is given and e, 41 is random with

1
Plens1 =1) = P(Pa41 = Tnt1) = 3-

One sees that when z,4; takes on the “wrong” value, the conditional expected value
of fin41, giVen 41, can be farther from S than g, is. (In Fig. 3b, the “wrong” value
for Zp41 18 0.) Since distance from S is a convex function of IR?, Jensen’s inequality
implies that the conditional expected distance (given the past and Tp41) CBD0 increase
when ., takes on the “wrong” value and we predict zn4) using a fair coin toss.
c) The situation is different for the Blackwell algorithm. Here we have

l—wn 1fz,.+1 =0 (5)

E(en+1Tn+1, and past until n) = {w,. ey =1

and the conditional expected change from iy, to fin41 is a move toward S, provided
the change is small enough. If we denote by T the line through (%,-;— which is
perpendicular to the line through (%, %) and p,, then the conditional expectation of
Hn+1 i8 closer to T than p, was. See Fig. 3c.

Because of this orthogonality property of the Blackwell algorithm, we have

2
1
2 In) < (—) & +—-
E(d7 41| past until n) < (n+l) dy + 2(n+1)3 (6)
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Fig. 3b.

One sees this as follows. By (4),

n 1
Bngl = m/‘n + n_-'}-l(:n+l, en+1)y
s0 that
11 _ 1 _ 1
i < d(#n+1,(-2—, 5)) =(Zp41 — 5)2 + (En41 — 5)2 (M

n 2 1 n _ 1 1 _ 1 }
=<n+1) di+2(n+1)2+(n+1)2{(z-——i)(zn.ﬂ—i)-}-(en—5)(en+1_%)}.
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Now take the conditional expectation in (7), with z,41 given but e,4; having the
conditional probabilities given by (5). For either zn,41 = 0 or 2,41 = 1, the condi-
tional expectation of the last (cross product) term in (7) vanishes, leaving us with
(6).

If p, is in S, so that d, = 0, then it is easily shown that d? 15 m Thus,
(6) holds when p,, € S. Since d,.+1 -2-d,, when u,, is in the interior of D, or D,
(6) holds regardless of where p,, is

By (6), d2 is an almost supermartingale. Theorem 1 follows from the convergence
theorem for a,lmost supermartingales in Robbins and Siegmund (1971).

n+1

2 A Three-Category Generalization of the Blackwell
Algorithm

Let 21,29, ... be a sequence with values in {0, 1,2}, and let p;, p, . . . be a prediction
algorithm. Let e; and &, be as in Sect. 1, and let Z, = (Zo,n, Z1,1, Z2,n) be the relative
frequencies of the categories “0”, “1”, and “2”. Of course Z;, > 0,4 =0,1,2, and
Zom + E1n + Ean = 1. Let pp = (£n, €,), and let

Zy={(u,v,w) €[0,1Pju+v+w=1}
denote the two-dimensional unit simplex. Also define
S = {(u,v,w,y) € I3 x [0, 1]|y > max(u, v, w)}.

Theorem2 There is a generalized Blackwell algorithm for which d(p,,S') — 0 as
n — 00, almost surely, for every infinite sequence with values in {0,1,2}.

In the following, we will try to explain Theorem 2 and the generalized Blackwell
algorithm. Let it first be said that the “triangle” X is the natural domain of Z,,. On
this triangle erect the perpendicular “success coordinate axis”, so that the “prism”
X3 x [0,1] with base X, results as the frequency-success space of u,. See Fig. 4.

The counterpart of the two-dimensional triangle S = {(z,y)|ly > zand y > 1—-z}
is §'. For each upper corner, cut the prism with the plane through that upper corner
and the opposite bottom edge. These three cuts separate the prism into eight pieces.
The top piece of the prism is S’. Figure 5 shows the prism with S’ removed.

The generalized Blackwell algorithm can now be explained using the cuts just
described. As before, p, 41 can be chosen arbitrarily when u, € §’. If S’ is removed,
seven pieces of the prism remain.

In the three pieces containing the vertical edges of the prism, one determinis-
tically predicts the category corresponding to the vertical edge. In the pyramid at
the base of the prism, one randomizes between all three categories by projecting the
point (3,3, 3,3) onto the base (= Z3) through the point tn. The coordinates of
the projection point in X, are the randomization probabilities for the corresponding
categories. The three remaining pieces each touch two of the bottom corners of the
prism. In these pieces, one randomizes between the two categories corresponding to
these two bottom corners.

The theorem has a character similar to the theorem of Sect. 1. The hardest
sequences to predict are iid trinomial variables, in the sense that for such sequences
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Fig.4. 23 x [0,1].

Fig.5.

one cannot do better than to have y, converge to the bottom of S’. Among these
sequences, the uniform distribution is the least pleasant, in that the limiting relative
frequency of correct prediction is minimized at %
Here is another connection with Sect. 1. If one projects the prism onto its vertical
sides in the proper way, one gets the Blackwell two-category algorithm on each side.
As for the proof, one can give a geometric argument similar to that of Sect. 1.
One should note, however, that the prism must be stretched by a factor of v/3 in the
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Fig. 6.

direction of the success axis to make the corresponding orthogonality relations hold.
After this rescaling, d?(u,,S’) is an almost super martingale, so Theorem 2 follows
from the same theorem of Robbins and Siegmund (1971) used in Sect. 1.

It seems to be possible to extend the procedure to more than three categories.
Finally, note that one gets a puzzle with 18 pieces if the prediction prism is also cut
from the bottom corners to the opposite top edges. See Fig. 7.

3 Connection with Blackwell’s Theorem

Here we assume that the reader is familiar with Theorem 1 of Blackwell (1956).
Instead of the prism X x [0,1] and S’, we consider the stretched prism

P'={(u+y,v+y,w+y)|(y,v,w,y) € T x[0,1]}
and its subset
§"={(u+y,v+y,w+y)l(u+y,v+yw+y) € P’ and y > max(u,v, w)}.

The edges of the prism P” are the possible outcomes of the game with vector payoff
matrix

(2,1,1) (0,1,0) (0,0,1)
M=|(1,0,0) (1,2,1) (0,0,1)].
(1,09 (0.1.0) (11,9

Some elementary calculations show that the “sides” of S which contain the point
(%, %, %) are perpendicular to each other. This enables one to show that the assump-
tions of Blackwell’s Theorem 1 are satisfied with S” in place of S, which implies our
Theorem 2.



Blackwell Prediction 511

Fig. 7.
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