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Abstract. Let F denote a distribution function which has a finite positive
mean g; let X1, X3, ... denote independent random variables with a common
distribution function F;let Sy, Si, S, ... denote the random walk Sp = 0
and Sp = X34+ X, forn =1, 2, ...; and let g denote a nonnegative finite
convex function which attains its minimum at a unique b > 0. The problem
of minimizing E{g(S:)] with respect to stopping times ¢ is considered. It is
shown that there is an a < b for which it is optimal to stop as soon as S, > a;
and a is characterized in terms of a ladder height distribution.

1 Introduction

Let X3, X3, ... denote independent and identically distributed random variables
with a common distribution function F and a finite, positive mean g, and let S, =
X1+ 4+ X,,n=0,1,2,... denote the random walk. Next, let g be a nonnegative,
finite, convex function which attains its minimum at a unique & > 0, and regard
9(S0), n=0,1,2,... as a sequence of potential losses. The problem of minimizing
E[¢(S:)] with respect to stopping times ¢ is considered.

Special cases of this problem have been solved elsewhere. The case in which
g(z) = |z — b| and F is a geometric distribution is called the parking problem by
Chow, Robbins, and Siegmund (1971, p. 45, 60). Cases in which g(z) = ™% + cz,
where 0 < ¢ < 1and [, e~%F(dz) = 1 arise in the construction of optimal sequential
tests. Such cases were considered by Lorden (1977). Lorden’s problem also arises in
the work of Lerche (1991).

The purpose of this paper is to solve the problem under minimal conditions on
g and F. In fact, it is not even assumed that E[g(S:)] < oo for all (or any) k (when
F(0) > 0). The solution is presented in Sect(s) 4 and 5, where it shown to be optimal
to stop as soon as S, > a = a(F,g), and illustrated by examples in Sect. 6. When
F(0) = 0, the problem is a simple monotone case. The reduction of the general to
the special case uses the Wiener-Hopf factorization for random walks.

2 Preliminaries

To increase the generality of the results suppose that there are nondecreasing sigma
algebras Ao, A, ... for which X} is .Az-measurable and independent of Az_; for
allk=1,2, ..., and consider (a.e. finite) stopping times ¢ > 0 with respect to Ag,
Ay, ... Of course, the sequence of sigma algebras generated by X, X, ... satisfies
these conditions.
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A Truncation Lemma
From the standing assumptions on g it follows directly that
J2l = O(s(2)) 28 Ja] — oo. (1)
In addition, the following related conditions are imposed in places:

9(z) = O(|z]) as z — —oo, @

9(z) = O(|z[) as z — oo. )

Lemma 1 Suppose that (2) holds. If t is a stopping time and E[g(S;)] < oo, then

lim 9(Sa)dP =0
n

n—+00 >

and
E[g(S:)] = lim Efg(Sirn)),

where t An denoles the minimum of t and n.

Proof. By (1), there is a constant C for which E|S;| < C{1 + E[9(S;)]} < 0. So,
E(t) < o0, by a converse to Wald's Lemma. See Gut (1988, Theorem 1.5.5). Also,
by (2), there is a constant M for which g’ > —M, where g’ denotes the right hand
derivative. If n > 1 and ¢ > b, then

/ [9(5:) — 9(Sw)ldP > / ¢'(5a)(St — 5a)dP, 0
1>n,85.<¢c 1>n,5.<¢

by the convexity of g. On {Sa < ¢}, |¢'(Sa)(St — Sn)| < [M + ¢(c)}|St — S|, which
is integrable; and E[g'(S)(S: — Sn)|Aa] = ¢'(Sa)nE(t — n|A,), by Wald’s Lemma.
So, the right side of (4) becomes

[ . Gue-map>-Mu [  -map
t>n, S, <e t>n,S.<e

Combining the last two expressions and letting ¢ — o0, leads to

/ 9(Sn)dP < / [9(Se) + Mu(t — n)}dP
>n >n

for all n > 1. The first assertion of the lemma now follows by letting n — oo; and
the second is an easy consequence of the first.



Parking Problem 525

Some Notation

Convolution Operators. If G is a distribution function and k is a measurable function,
write

Gh(z) = / h(z + y)G(dy)

whenever the integral exists.
Ladder Variables. Let no, 71, 12, - . . denote the (strict ascending) ladder epochs,
defined by 1o = 0 and

m =inf{n > ne_1:Sa > Sy
for k=1, 2,.... Write 1 for ;. Then
E(n) = exp {i ZPISa < 01} <o
n=1 ™

and
E(Sy) = pE(n) <

by Sptizer’s Identity and Wald’s Lemma. See, for example, Woodroofe (1982, p. 22).
Let Ht denote the distribution function of the first ladder height S,

H*(z) = P[S, < 7]

for all 0 < z < 00. The ladder heights S, , k=10,1,2, ..., form a random walk with
step distribution H*t.

Assumption. It is assumed throughout that
Elg(S,)] = H*g(0) < o0. (%)

A convex function which satisfies (5) and the conditions listed in the introduction
is called admissible below. If (5) fails then stopping immediately is optimal: see the
remark following the proof of Theorem 2.

3 Lemmas

Some Properties of Htg
The solution to the stopping problem requires some simple properties of Htg.

Lemma 2
i) Htg(z) — g(z) is nondecreasing in z;
i) H*g is continuous on the interior of {z : Htg(z) < o0};
iii) HYg(z) — g(z) > 0 for allz > b;
iv) limg—,_ oo H¥ g(2) — 9(z) < 0.
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Proof. i) and iii) follow easily since

00
Hg(z) - 9() = [ lo(a+4) - s+ @),

g(z + y) — g(z) is nondecreasing in z for all y > 0, and g(z + y) — g(z) > 0 for
all z > b and y > 0. Next, ii) follows easily from the Dominated Convergence
Theorem and the monotonicity of g(z + y) — g(z). For iv) observe that for all y > 0,
9(z+y) —g(z) decreases as z decreases and that limg_,_ o g(z+y)—g(z) < 0, since
g(z +y) — g(=) < 0 for all z < b — y. Then iv) follows directly from the Monotone
Convergence Theorem.

For the next lemma, let
a =sup{y: H*g(y) — 9(y) < 0}. (6)

Lemma 3

i) —00 < a<b<oo;

i) Htg(y) — 9(y) 2 0 for ally > a;

iti) Htg(y) — g(y) < 0 for ally < a;

iv) Htg(a) < g(a) with equality if H¥ g(z) < oo for some z > a.

Proof. That —co < a < b, ii) and iii) are clear from (6) and Lemma 2. For the first
part of iv), let 6y = a—1/mform = 1, 2, .... Then Htg(am) < g(am) for all
m > 1, so that

0 > liminf[H*g(am) — g(am)] > H* g(a) - g(a)

by Fatou’s Lemma, since g(am + ¥) ~ g(am) is bounded below in m > 1 and y € R.
The second part of iv) follows directly from Lemma 2-ii). Finally, that a < b in i)
follows from iv) and Lemma 2-iii).

Lemma 4 If § is another admissible convez function for which §(y) = g(y) for all
y>a—1, then d = a, (where @ is defined by (6) with g replaced by §).

Proof. This is immediate from Lemma 3 since the functions H*g— g and H+§—§
are increasing, agree on [a — 1, 00), and are negative on [a — 1,a) and nonnegative
on (a,00).

First Passage Times

For all c € R, let
e=inf{n>0:5, >}

g.=inf{n>1:8, > ¢c}.
Observe that each 7. is a ladder epoch and that o, = 7. for all ¢ > 0, and let

p(z) = Elg(z +5x,..)), z€ R. ™)
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Lemma 5 p(z) < oo forallz € R.

The proof of this lemma is presented in Sect. 7.
It is shown below that 7, is optimal. The need to consider o, as well as 7, arises
from the relation

Fp(z) = Elg(z + So,_. )] ®)

for all z € R, which is easily verified by conditioning on X;. This relation is exploited
in Corollary 2 below.

4 The Monotone Case

The case in which F(0) = 0 is considered first. Then H+ = F.

It is necessary to take conditional expectations of random variables whose expec-
tations may be infinite (though defined). The definitions and conventions of Neveu
(1965, Section IV.3) are used in such cases. With these conventions, it is clear that

Elg(z + Se41) — 9(z + S}l Ae] = Fy(z + Si) - g(z + Si) ©

for all k > 0 and all z € R. By Lemma 2 and the assumption that F(0) = 0,
the right side of (9) is nondecreasing in k w.p.1. So, the stopping problem is like
the monotone case, described by Chow, Robbins, and Siegmund (1971, Ch. 3) (who
require more integrability than is assumed here). Observe that the right side of (9)
is nonpositive for k < 7,_, and nonnegative for k > 7,.,. Any stopping time r with
these properties is called a monotone case rule (for z) below.

Theorem 1 Suppose that F(0) = 0. If z € R, then Efg(z + S;)] is minimized by
t=T4_5. In fact, E[g(z + S;)] is minimized by any monotone case 7.

Proof. Following the outline of the proof of Theorem 3.3 of Chow, Robbins, and
Siegmund (1971) it may be shown that for any for any monotone case stopping
time 7

TVi=1

[ lste+5) = s(z+ 5, )aP = / { Y IFo(z+Si) —g(z+sk)|}dP (10)

k=TAt
for all A € A,v; for any stopping time ¢ for which E{g(S;)] < oo, where avb de-

notes the larger of @ and b. See Sect. 7 for the details. Theorem 1 is an immediate
consequence.

Corollary 1 If F(0) = 0, then p(z) = inf; E[g(z + 5;)] for allz € R.
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5 The General Case

In the general case, where F(0) may be positive, Theorem 1 may be applied to the
ladder height process S,,, k=0, 1, 2, .... Since 0 and 5 are both ladder epochs, it
follows that

p(z) < min[g(z), H¥g(z), Yz € R. (11)

Extension of Theorem 1 to the general case will be accomplished by considering
the stopping times vp = 0,

Ye=inf{n>v_1:8. > Sy_, +¢}, E=1,2,...

and
k=inf{k>0:S,, >0},

where ¢ < 0 is regarded as fixed for the moment. Observe that y; = o.. It is easily
seen that

n=Yx. (12)
Proposition1 Ifc< 0 and z € R, then
Elg(z + S,,)] 2 minfg(z), H*g(z)).

Proof. Fix ¢ < 0 and z € R throughout the proof. Let F, denote the distribution

function of S,, = Sy,, and let H} and H_ denote the distribution functions of the

strict ascending and weak descending ladder heights for a random walk with step

distribution F,. Here H_ is a defective distribution, and H} = H*, by (12). So,
F.=HY+H; -H*«H_,

where * denotes convolution, by Wiener Hopf Factorization. See Feller (1971, pp. 570~
571). Suppose first that (3) holds. Then H*g(z) < oo, since E(S,) < o0o. So, since
Elg(z + S,.)] = F.9(z) and H_ is supported by [, 0],

Elg(z + S..)]=H* g(z) + H:g(z) — H*  H7 g(z)
=H*g(z) + / ~ [ 6@ +9) - oe+ -+ H; @)E (@),

Here g(z + y) — 9(z + y + 2) is nonincreasing in y < 0 for all 0 < z < o0, so that
g(z+y)—9(z+y+2) > g(z)—g(z+2)forally < 0 and 0 < z < 0o. Let a = H} [c,0].
Then

oo p0
Blale+ 5,1 2 Bro(@)+ [ [ @)~ o(e + 2 (@) (02)
= H*g(z) + alg(z) — H* g(z)]
> min[g(z), H*g(z)).

For the general case, let h,, = —m, ¢', or m accordingly as ¢’ < —m, -m < ¢' < m,
or ¢’ > m, and let

m(0) =90+ [ hn(a)dz (13)
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for all y € R and m = 1, 2, ... with the sign conventions governing Riemann
integrals. Then each g,, is an admissible convex function which satisfies (3), and g,
increases to g as m — oo. So,

Elg(z + S.)] > Elgm(z + S)] 2 min[gm(z), H* gm(2))]
for all m =1, 2, . ... The proposition now follows by letting m — oo.
Corollary 2 Ifz € R, then Fp(z) > p(z).
Proof. X z < a, then Fp(z) = p(z), since 04—y = Ta—s. See (8). If z > a, then
Fp(z) = Ely(z + 5,_,)] 2 minlg(z), H*9(2)] > p(a),
by (11) and Proposition 1.
Theorem 2 E[g(S;)] is minimized among all stopping timest byt = 7,.

Proof. Since E[g(Sy,)] = p(0), it suffices to show that E[g(S;)} > p(0) for all stop-
ping times ¢; and the latter is clear if E[g(S;)] = oco.

Suppose first that (2) holds. By Corollary 2, p(S,),n = 0, 1, 2, ... is a sub-
martingale. So,

Elg(S)] 2 E[p(S1)] 2 p(0) = Elg(Sr,)]

for any bounded stopping time ¢ by the Optional Stopping Theorem and (7). So, if
t is any stopping time for which E[g(S:)] < oo, then

Elg(S)] = Jim Elo(Sina)] > #(0),

by Lemma 1.

For the general case, in which (2) is not required, let by, = —m or ¢’ accordingly
a8 ¢’ < —m or ¢’ > —m, and define g,, by (13) for m = 1, 2, .... Then each g,, is
an admissible convex function for which (2) holds, and g, increases to g as m — oco.
Define a,, and p,, by (6) and (7) with g replaced by g, forallm=1,2,....Ifmis
sufficiently large, then g,,(y) = g(y) for all y > a — 1, so that a,, = a and p,, = p.
For any such m and any stopping time ¢,

E[g(S:)] 2 Elgm(S:)] 2 pm(0) = p(0),

to complete the proof.

Remark. If H*g(0) = oo then stopping immediately is optimal. This follows from
Theorem 2 provided there is a convex function § < g with §(0) = g(0), H+§(0) < co
and @ < 0, for then inf; E[g(S;)] > inf, E[§(S:)] = §(0) = E[g(Ss)]- If gm is defined
as in the proof of Proposition 1 then H+g,,(0) — oo as m -+ oo, so for mg sufficiently
large § = gm, will satisfy H*§(0) > §(0). Since § grows linearly at +o00, H*j is
everywhere finite. Hence H+j is continuous and & < 0 by Lemmas 2 and 3.
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6 Examples

There is a useful characterization of a. Let ¥ denote the mean of Ht; and let
c1_ g+
K@) = / 1-H'G),,
0 v

for all 0 < z < oo. If F is nonarithmetic then K is the asymptotic distribution of
residual waiting time S,, — ¢ a8 ¢ — co. The following result does not require F to
be nonarithmetic, however.

Theorem 3 If Kg(z) < oo, for all 0 < z < oo, then Kg(z) is minimized when
z=a.

Proof. 1t is clear that Kg is convex and, therefore, continuous. Using the assumption
that Kg is finite, the monotonicity of ¢/, and the Dominated Convergence Theorem,
it is easily seen that

koY@ = [ ¢+t

for all z € R. Next, since ¢’ is nondecreasing and H* has a finite mean, Fubini’s
Theorem leads to

k@ = [ | i " e+t dy

= /om Un' g(z+ y)dy] H*(dz)

= [+ - st @)
= H*y(2) - 5(2)

for all z € R. So, (Kg)/(z) is nonpositive for z < a and nonnegative for z > a. The
theorem follows.

Ezample 1.

i) If g(z) = |z — b| for all z € IR, then b — a must be a median of K.
ii) If g(z) = (z —b)? for all z € R and H* has a finite second moment v, then
b — a is the mean of K, v3/2v.
ili) If g(z) = e™* + ¢z for all z € R, where 0 < ¢ < 1, then b = log(1/c). If H* has
a finite second moment and if

K= /ooo e *K(dz)

then a
— pe—% 2
Kg(z) = xe +c(z+ 2,,)

is minimized when z = log(x/c).
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Ezample 2. Suppose that ¢(z) = e~ +cz forall z € R,

i) ¥ fpe~®F(dz) = 1, then ¢(S,),n =0,1,2, ..., is a submartingale. So, the exis-
tence of a nontrivial optimal stopping time requires a violation of the hypotheses
of the Optional Stopping Theorem.

ii) If F has Lebesgue density f(z) = }e®,—00 < z < 0 and f(z) = 3e%,0 <
z < 00, then H+ is the standard exponential distribution and Theorem 2 is
applicable, even though E[g(S,)] =coforalln=1,2,.... :

7 Proofs of Lemma 5 and (10)

Proof of Lemma 5. 1t is clear that p(z) = E{g(z+Sr,_,)} = 9(2) < 00,if z > a. So,
it suffices to consider z < a. Let ¢ = a~2z > 0, aud let U denote the renewal measure
for the ladder height process, U(B) = Y0 ) H*+**(B) for Borel sets B C [0, 00),
where + denotes convolution. Then, since {r. = k} = {S,,_, < ¢} N {S,, > c} for
k=1,2,..,

Eoz+50= [ { [ sty DHER) U (@)
</ “Hg(s +4)U(dy)

<[ " gz + 5)U(dy)

< 00,
where the penultimate inequality follows from the definition of a.

Proof of (10). 1t is assumed throughout that F(0) = 0 and that Fg(0) < co. The
details are supplied only for the case z = 0. There is no loss of generality in supposing
that (2) holds, since values of g(x) for z < 0 are irrelevant.

Let 7 be a monotone case rule (for 0). Then 7 < 7,, 8o that E[g(S,)] < oo, by
Lemma 5 and the convexity of g. Next, let ¢ be another stopping time for which
E[g(S;)] < oo; and let A € Arvs. Then it suffices to show:

~/A,r=n<t[‘q(5‘) = 9(5:)1P = /A,r=n« {

-1

(Fg(S) - 9(Sk)]} P (14)

k=n
and

T—

1
/ lo(Sr) - 9(Se)ldP = {E[Fg(s,,) - y(Sn)]} dP  (15)
At=n<lr At=n<r

k=n

foralln =0,1,2, ..., since (10) then follows by summing over n. The proofs of these
two relations are similar. Only the first is given in detail. Let m > n be an integer
and write ¢’ = ¢ A m. Then g(Sy) is integrable, since g(S¢) < g(0) + 9(S:). Here
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9(Sk) ~ 9(Se-1) > 9(Xi) — 9(0) are bounded below by integrable random variables
forallk=1,2, ..., by the convexity of g. So,

m i
S, oS- s(slap = Py} oo, {3 (s - s(Si-ulhar
=3 /

k=n+1l A, r=nt>

k[ﬂ(sk) ~ 9(Sx-1)]dP.

Now, AN{r=nt' 2k} =(ANn{rVi2khNn{r=n} €A forallk =n+1,
..., m. So, the last line is

i / >k[9(5h) — 9(Sk-1)ldP

k=n+l A, r=n >

Y

bong1JAT=n>

t'-1
= ./A,r=n<‘ {Z[Fﬂ(Sh) - g(S,,)]} dP,

k=n

h[Fg(Sk_l) — 9(Sk-1)ldP

Relation (13) now follows from Lemma 1 and the Monotone Convergence Theorem
by letting m — oo.
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