Lecture Notes in Statistics

Vol. 1: R.A. Fisher: An Appreciation. Edited by S.E. Fienberg and D.V. Hinkley. XI, 208 pages,
1980.

Vol. 2: Mathematical Statistics and Probability Theory. Proceedings 1978. Edited by W. Klonecki,
A. Kozek, and J. Rosinski. XXV, 373 pages, 1980.

Vol. 3: B. D. Spencer, Benefit-Cost Analysis of Data Used to Allocate Funds. VIII, 296 pages, 1980.

Vol. 4: E. A. van Doorn, Stochastic Monotonicity and Queueing Applications of Birth-Death Proces-
ses. VI, 118 pages, 1981.

Vol. 5: T. Rolski, Stationary Random Processes Associated with Point Processes. VI, 139 pages,
1981.

Vol. 6: S. S. Gupta and D.-Y. Huang, Multiple Statistical Decision Theory: Recent Developments. VI,
104 pages, 1981.

Vol. 7: M. Akahira and K. Takeuchi, Asymptotic Efficiency of Statistical Estimators. VIII, 242 pages,
1981.

Vol. 8: The First Pannonian Symposium on Mathematical Statistics. Edited by P. Révész, L. Schmet-
terer, and V.M. Zolotarev. VI, 308 pages, 1981.

| ecture Notes In
Statistics

Edited by D. Brillinger, S. Fienberg, J. Gani,
J. Hartigan, and K. Krickeberg

40

Vol. 9: B. Jergensen, Statistical Properties of the Generalized Inverse Gaussian Distribution. VI, 188 ——
pages, 1981.

Vol. 10: A. A. Mclintosh, Fitting Linear Models: An Application on Conjugate Gradient Algorithms. VI,
200 pages, 1982.

Vol. 11: D. F. Nicholls and B. G. Quinn, Random Coefficient Autoregressive Models: An Introduction.
V, 154 pages, 1982. ;

Vol. 12: M. Jacobsen, Statistical Analysis of Counting Processes. VI, 226 pages, 1982.

Vol. 13: J. Pfanzagl (with the assistance of W. Wefelmeyer), Contributions to a General Asymptotic
Statistical Theory. VII, 315 pages, 1982.

Vol. 14: GLIM 82: Proceedings of the International Conference on Generalised Linear Models.
Edited by R. Gilchrist. V, 188 pages, 1982.

Vol. 15: K.R. W. Brewer and M. Hanif, Sampling with Unequal Probabilities. IX, 164 pages, 1983.

Vol. 18: Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-
Bayesian Approaches. Edited by J. P. Florens, M. Mouchart, J.P. Raoult, L. Simar, and A.F. M.
Smith. Xi, 204 pages, 1983.

Vol. 17: L. V. Basawa and D. J. Scott, Asymptotic Optimal Inference for Non-Ergodic Models. IX,
170 pages, 1983.

Vol. 18: W. Britton, Conjugate Duality and the Exponential Fourier Spectrum. V, 226 pages, 1983.
Vol. 19: L. Fernholz, von Mises Calculus For Statistical Functionals. Viil, 124 pages, 1983.

Vol. 20: Mathematical Learning Models — Theory and Algorithms: Proceedings of a Conference.
Edited by U. Herkenrath, D. Kalin, W. Vogel. XiV, 226 pages, 1983.

Hans Rudolf Lerche

Boundary Crossing
of Brownian Motion

Its Relation to the Law of the lterated Logarithm and to
Sequential Analysis

Vol. 21: H. Tong, Threshold Models in Non-linear Time Series Analysis. X, 323 pages, 1983.

Vol. 22: S. Johansen, Functional Relations, Random Coefficients and Nonlinear Regression with
Appilication to Kinetic Data. VIiI, 126 pages. 1984,

Vol. 23: D. G. Saphire, Estimation of Victimization Prevalence Using Data from the National Crime
Survey. V, 165 pages. 1984.

Vol. 24: T.S. Rao, M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series :
Models. Viil, 280 pages, 1984. ;

Vol. 25: Time Series Analysis of Irregularly Observed Data. Proceedings, 1983. Edited by E. Parzen.
Vit, 363 pages, 1984,

ctd. on inside back cover

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo



Author

Hans Rudolf Lerche
institut fiir Angewandte Mathematik, Im Neuenheimer Feld 294
6900 Heidelberg, Federal Republic of Germany

Mathematics Subject Classification (1980): 60165, 621 10, 860G 40, 60F 10
62C10,58G 11 ,

ISBN 3-540-96433-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-96433-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
s concerned, specifically those of translation, reprinting, re-use of illustrations, broadcastin
reproduction by photocopying machine or similar means, and storage in data mmzrm C:%«m_

§ 54 of the German Copyright Law where copies are made for other than private cm.m afeeis
payable to “Verwertungsgesellschaft Wort", Munich. _

€ Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2147/3140-543210

PREFACE

This is a research report about my work on sequential statistics
during 1980 - 1984. Two themes are treated which are closely related

to each other and to the law of the iterated logarithm:

I) curved boundary first passage distributions of Brownian
motion,
II) optimal properties of sequential tests with parabolic and

nearly parabolic boundaries.

In the first chapter I discuss the tangent approximation for
Brownian motion as a global approximation device. This is an extension
of Strassen's approach to the law of the iterated logarithm
which connects results of fluctuation theory of Brownian motion with
classical methods of sequential statistics. In the second chapter
I make use of these connections and derive optimal properties of
tests of power one and repeated significance tests for the simplest
model of sequential statistics, the Brownian motion with unknown
drift. To both topics there underlies an asymptotic approach which is
closely linked to large deviation theory: the stopping boundaries
recede to infinity. This is a well-known approach in sequential
Statistics which is extensively discussed in Siegmund's recent bock
"Sequential Analysis". This approach also leads to some new insights
about the law of the iterated logarithm (LIL). Although the LIL has
been studied for nearly seventy years the belief is still common
that it applies only for large sample sizes which can never be obser-
ved in practice. One of the goals of this study is to correct this
belief somewhat by putting the LIL in (statistical) contexts where

it gets a meaning for finite sample sizes.

This work has some overlap with Siegmund's book, although many
of the approaches and results are different. Curved boundary crossing
distributions is a joint theme but Siegmund emphazises likelihood-
ratio arguments. Those are also used in Chapter II of this report,
to study optimality in sequential testing, a theme which is essen-

tially excluded from Siegmund's book.
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I tried to keep the presentation of the subject as simple as
possible, to present the basic relations between the different con-

cepts in the simplest setting. This explains also the restriction
to Brownian motion.

For statisticians the information might be of interest that
Chapter II, the more statistical part of this work, can be read

without knowledge of the contents of Chapter I. Only the introduc-~
tion is a prerequisite.

Most of this work I did as a member of the Sonderforschungsbe -
reich 123 at nrm University of Heidelberg and some as a visitor of
the Mathematical Sciences Research Institute at Berkeley.

Finally I thank numerous friends and colleagues inside and out-
side of Germany for their interest and kind support,

Heidelberg, 13.7.1986 H.R. Lerche
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Introduction
Introduction

Let W(t) denote the standard Brownian motion. Khintchine's law of the
iterated logarithm states that almost surely

(1) lim sup | wie) |
t o v 2t loglogt

As Kolmogorov and Hartman-Wintner have shown, this law extends to partial
sums of independent identically distributed random variables with zZero
mean and finite variance.

While the law of large numbers and the central limit theorem were in-
dispensible tools of mathematical statistics from the beginning, the law
of the iterated logarithm, which describes phenomena in the intermediate
domain of the two laws, for a long time seemed to have no statistical
significance at all. This view has changed somewhat in the last twenty
years since Neyman (1969), (1971) praised the new developments of se-
quential statistics connected with the tests of power one. Meanwhile,
proceding from the generalizations of the law of the iterated logarithm
due to Kolmogorov-Petrovski-Erdés and Strassen (cf. Strassen (1967)),
useful approximations of curved boundary first passage distributions
were derived, at first by Jennen-Lerche (1981) and then by Dinges
(1982), Ferebee (1982), (1983) , Jennen (1985) and Klein (1986). Inde-
pendently Cuzick (1981) found similar formulas by a different approach.

In the first chapter we develop certain aspects of these approximations,
mainly emphazising the connections to other methods and to the classical
fluctuation theory of Brownian motion.

In the second chapter we study the optimal properties of sequential
tests with parabolic and nearly parabolic boundaries (tests of power
one) when there is no indifference zone in the parameter space. This
research relates the work on sequential tests with (nearly) parabolic
boundaries due to Robbins, Siegmund et al. to the theory of optimal
Sequential testing developed by Wald-Wolfowitz, Chernoff, Lorden et al..
The chapters are linked by the fact that information about curved bound-
ary first passage distribution is needed to determine the optimal pro-



cedures. For a demonstration of this point see Section 2 of Chapter
II.

For simplicity we restrict our study to the model of Brownian motion.
This dispenses with the overshoot problems associated with random walks
that make the techniques more complicated. For more information on the
overshoot problems for curved boundary first passage distributions, see
the monographs of Siegmund (1985) and Woodroofe (1982) .

Presumably Robbins in 1952 was the first who realized that the law of
the iterated logarithm (LIL) has some meaning for sequential statistics;
he noted that by the LIL the sequential version of the usual significance
test will, with probability one, eventually detect an effect even when
there is none. This negative observation started the study of sequential
tests with parabolic and nearly parabolic boundaries. Independently

of each other Darling-Robbins (1967) and Farrell (1964) found that the
LIL enables one to construct sequential procedures with discontinuous
power functions: the tests of power one. Their operating characteristics
were studied in detail by Darling-Robbins (1968), Robbins-Siegmund
(1970), (1973) and others. For an early survey see Robbins (1970). as
Neyman (1971) pointed out, Barnard had much earlier used a one-sided
mm@cw:wwmw likelihood~ratio test as a control procedure having power

one 1in some range of the parameter space.

To explain the concept of tests of power one more thoroughly, let us
] . . ’

consider Brownian motion W(t) with unknown drift 0. Let P, denote the
assoclated measure. A level a-test of power one for ﬁmmnwmm H,:0 =0
v : i i ot io
ersus mA : 0= 0 is given by a stopping time T of Brownian motion
W(t) which satisfies
(2) Po(T <w) = q,
(3) Pg(T < =) = 1

for 6 =0, -

Stopping always means a decision in favor of "g=zO"

Examples are provided by stopping times

(4) T = inf{t>0| |W(t) |[2y(t)}

where Y (t) satisfies (1) eAﬁvv00vo for all t; (ii) ¢ (t) is an upper
class function of Brownian motion at infinity (this means moAzﬁﬁvAeAnv
for all t large) = 1); and (iii) y(t)=o(t). By the law of the iterated
logarithm (1), (i) and (ii) imply (2) for a certain O<c<1 and by the
law of large numbers (iii) implies (3). A popular example which satis-

fies these conditions is given by

/2 £or £>0 with b> 1.

(5) P(t) = Tﬁi :oﬂﬁmmiﬁom i

For this example (2) holds with QnUnA as is shown in Robbins-~Siegmund
{(1970) (see Theorem 2.1 of Chapter I)}. The method Which Robbins~Siegmund
used is that of weighted likelihood-functions. It is a classical tech-
nique of sequential statistics due to Ville and Wald (see e.g. p. 75 of
Wald's book), which has been extended by Siegmund (1977), Lalley (1982)
and others. The result of Robbins-Siegmund (see Theorem 2.1, Chapter I}
yields the crossing probabilities for Brownian motion over boundaries

which belong to the upper class at infinity.

There is another classical method which yields crossing distributions
for upper class boundaries at zero: the method of images (see e.g. Levy
(1965, p. 82)). It will be presented in Section 1 of Chapter I in a
rather general form following some ideas of Daniels (1982). From this
general method of images the tangent approximation and the associated
techniques of proof can be explained in a natural way (see Section 3

of Chapter I). Surprisingly the method of images and the method of
mixtures of likelihood functions turn out to be equivalent up to time
inversion (see Section 2). Further information on this topic is con=-

tained in Siegmund's monograph.

Besides these two methods there are not many others which lead to curved
boundary probabilities for different types of boundaries. One which is
beyond the scope of this study has been used by Novikov (1981) to prove
Theorem 5.2 of Chapter I. It combines the Girsanov-transformation with

Laplace-transform techniques.



The oldest results about curved boundary first passage distributions
are presumably those for exact parabolas. They rely on special tricks
which only work for these boundaries. A nice presentation of this sub-

ject is given by Uchiyama (1980).

The main topic of Chapter I is the tangent approximation, which compared
to the method of images and the method of weighted likelihood functions
yields results for a much wider class of boundaries. It is closely

related to the following classical results about Brownian motion.

a) The Bachelier-Levy formula (see Levy (1965)). It states that the den-
sity of the first passage time of Brownian motion over the boundary

Y(t)=A+bt is given by

_ A y(t)
- (6) plt) = MMNM eA!ﬂﬂl
- -y*/2t
where ¢(y) = —— e . For a proof see also example 1 of Chapter I,
VZm
Section 1.

b) The Kolmogorov-Petrovski~Erdds (KPE) test (c.f. Ito-McKean (1974, pp.
33-34, 161-164) and Petrovski (1935), especially the footnote on p. 414
for some historical facts). Let y¥(t) denote a positive continuous func-
tion on R = (0,») such that P(t) /t is monotone decreasing and

eAﬁv\\m is monotone increasing. For the standard Brownian motion W let
S=sup{t>0|W(t)2y(t)} denote the last entrance time below y. According

to a well known zero-one law, S is finite or infinite with probability

one. Then
o
P(S<®) = 1 if and only if [ 375 ¢(5e-)dt < =.
1

The KPE-test is a generalisation of the LIL; for the functions ¢(t)
(2(1+e)t log log t) /2,

i

S = « with probability one if and only if ¢ £ O.

By the time inversion transformation y = x/t, s = 1/t, standard Brownian
motion on (0,®) starting at O) is mapped into itself with inverted time-
scale. The KPE-test as well as the LIL transform in the same way. Ito-

McKean and Strassen used this fact to give a direct and intuitive proof
of the KPE-test. Ito-McKean's proof of the "if" direction (p. 34 in the
1974 edition) is based on a direct geometric argument. (Their "“only
if"-part (p. 161) uses some diffusion theory and is not direct at all.)
Strassen (1967) gave a direct geometric proof of the "only if" part by
showing a sharper result: Let y(t) be an upper class function at zero
and assume that €A¢V\ﬁ9 is monotone decreasing for some O<o<1 and that

P(t) satisfies some smoothness conditions. Let
(7 T = inf{t>0|W(t) 2¢(t)}

denote the first exit time of the Brownian motion W over ¢ and p the
density of its distribution. Strassen showed that as t - 0, p(t) can be
approximated by the first exit density at t of the tangent to the curve

Y at t. (We shall call this the tangent approximation). By the Bachelier-
Levy formula (6), Strassen's result that the tangent approximation holds

can be written

(8) ple) = M8 4

nw

Wmn::é:: as £+0

with A(t) = ¢(t) - tyPp'(t). By time inversion Strassen derived from (8)
the approximate densities of the tail distribution of the last entrance

time S for upper class functions at infinity.

For completeness it should be mentioned that independently of Strassen,
Daniels (1974) derived heuristically the tangent approximation for U-

shaped boundaries as a local approximation.

Our study will discuss the tangent approximation as a global approxima-
tion device. The following result describes our approach (see Theorem
4.1 of Chapter I). Let ﬁem“m € R} denote an indexed family of smooth
boundaries. Let em denote their assocliated first exit times (defined

by formula (7)) and = their densities. Let ﬂ; > 0. Under conditions
similar to those of Strassen and under the assumption, mﬂem < ngw + 0

as a »+ «, the tangent approximation holds:



>m.nv emAﬁv
(9) p,(t) = MMNMI ¢ Ve ) (1+0 (1))

uniformly on Ao~ﬁ4v as a - .

Since this approximation is uniform, we get an approximation of the

first passage probabilities by integration. Examples are

(10) (i) b (£) = JZy(t/a), with ¢ a fizxed function,
(ii) emknv = y2{r+at), r > O.
(111) v () = at%, 0<a<i. .

Example (i) shows that Strassen's result on the tangent approximation
is covered by (9). Example (ii) was studied by Siegmund (1977), extending
the method of weighted likelihood functions. He derived

(1) P(|W(t)| > /Z(r+at] for some O<t<t,)
2 7 -r62/2 ao
=v/ae® = [ e & 1+ o)
v2/t

as a > «oF,

Since the tangent approximation (9) holds uniformly on compact intervals
for example (ii), one gets the first passage probability by integration:

g TN e,

t
_ -a 1 1 1+2r/at
120 BT <ey) = VaTe™ 5om |

(o]

*The idea to use the tangent approximation as a global approximation
device arose once during several discussions with H. Dinges about the
meaning of Siegmund's results from the viewpoint of classical fluc-
tuation theory of Brownian motion.

i
i
)

The leading term of the right hand side of (11) is twice that of (12),
which follows by a coordinate transformation. Since (12) gives the

probability for the one-sided problem, the two results agree.

There are some advantages to approximating the first passage densities
rather than the probabilities. We demonstrate this in the case of
example (iii). It can be shown (see Jennen-Lerche (1981)) that for
O<u<1 the tangent approximation holds uniformly on compact intervals,

e.qg. ﬁno\ﬁgu with AAnoAnAAB. By integration of equation {(9) one obtains

(13) P(t <T <t} = w%wﬂgvﬁeAwwwug\mv - eAmnw«A\va (1+a(1)).
for O<a<1. Its right hand side is equal to
wlhk.ﬁ T,fmnw-imv_ {(1+0(1)) if o > W
3058 [0 ] tvon) i a < )

as a =+ «,

This result shows that the first passage probabilities depend strongly
on the growth rates of the boundaries. The probabilities for the examples
(ii) and (iii), given by (11) and (13), are also quite different. On the
other hand the tangent approximation of the densities always has the same
form.

In Chapter I we will discuss several aspects of the tangent approximation
such as its range, higher order refinements and numerical accuracy. Jennen
in her doctoral thesis refined the tangent approximation by giving a
second order approximation from which she derived Siegmund's refinement

of (11) (see Theorem 4.4 of Chapter I). For another refinement see

Ferebee (1983). The accuracy of the approximations is discussed after
Theorem 4.4,



A central guestion of this study deals with the range of the tangent

approximation: on which intervals does the tangent approximation hold
uniformly?

It turns out that for lower class functions at infinity the tangent
approximation cannot hold on R, since by the KPE-test.

@ A (t) y_(t) '

a a
¢ ydt = =,
M numm VE

(For example (ii), this follows directly from equation (11).) This
observation leads us to some interesting phenomena related to the KPE-
test which will be described in Section 5 in detail: the tangent
approximation of the hazard rate for killing of the process at the
boundary. As a consequence we can state a uniform approximation result
for lower class functions over the whole time axis and derive necessary

and sufficient conditions for the tangent approximation (Theorem 5.5).

In the Supplement to Chapter I it is shown that the tangent approximation
is a formal saddlepoint approximation. Some explanations of the organi-
zation of Chapter I are given there too.

The results of Chapter I are useful for a variety of applications, For
instance in survival analysis they can be used to calculate the coverage
probabilities of confidence bands of the Kaplan-Meier estimator con-
structed with curved boundaries. They can also be used to calculate the
operating characteristics of sequential procedures approximately. Accord-
ing to a result of Le Cam (1979), Brownian motion with unknown drift for
many sequential situations turns out as the limiting statistical model.

In Chapter II we shall investigate some optimal properties of sequential
tests with parabolic boundaries. The results are of some interest for
medical statistics, since the repeated significance test is currently

in wide use and has until now had only a heuristical foundation.
Armitage (1975) propagated the test in his monograph as a natural pro-
cedure for clinical trials. Its operating characteristics were studied
by several authors (McPherson-Armitage (1971), Siegmund (1977), Wood-
roofe-Takahashi (1982)). But very little has been known about its
optimality properties.

our results extend some parts of the theory of sequential testing from
the case when there is an indifference zone in the parameter space to
the case when there is none. This branch of sequential testing has
started with the optimality result of Wald-Wolfowitz (1948) about simple
hypotheses and was continued by the work of Schwarz (1962), Kiefer~-Sacks
(1963), Lorden (1967) and Pollak (1978). All these authors studied se-
quential testing and design problems for composite hypotheses with an
indifference zone by taking a Bayes approach and assuming that there

are fixed costs c¢>0 per unit observation length. Following the idea of
Chernoff (1959), letting ¢-0, they derived the asymptotic behavior of
the rejection region. (Here an intrinsic relation to the approach of
Chapter I shows up. Letting ¢ =+ O means that the rejection boundaries

-1

recede to infinity. Therefore ¢ corresponds to the index a of the

boundary em as considered in Chapter I).

It turned out that, as in the Wald-Wolfowitz result, for 0-1 loss the
asymptotically optimal stopping rules are of the type: stop if the
posterior probability of the hypothesis or the alternative is too small.

We call such rules "simple Bayes rules".

There is a basic idea behind our approach. Differently than many of the
previous .authors did, we let the observation costs depend on the under-
lying parameter, in a mathematically convenient way. Then our results
show that for O-1 loss the simple Bayes rules are optimal or nearly
optimal when there is no indifference zone. The special choice of the

costs is discussed below.

One of the few problems of sequential statistics for which the sampling
costs have been formulated to depend on the underlying parameter is

the Anscombe-problem (see Anscombe AAWmuvv. There it is asked for an
optimal sequential sampling plan of a clinical trial under the assumption
that the "costs" are proportional to the treatment differences. Recent
progress on this problem has been made by Chernoff-Petkau (1981) and
Lai-Robbins~Siegmund (1983). The last paper contains an interesting

application of the tangent approximation.

For simplicity (for instance to prevent overshoot problems) we consider
in Chapter II the statistical model of Brownian motion W(t) with drift
6 € R.
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A problem of testing sequentially whether the drift is different from
zero is the following. Let F be a prior on R given by

_ _ Ve . _ 1 -x?/2 . .
F o= y§  + (1-y) [e(/re)/rde with O<y<t and ¢(x) = - consisting

’

of a point mass at {6 = 0} and a smooth normal part on {6 = 0}. Let the
sampling costs be ¢6?, with ¢ > 0, for the observation of W per unit
time when the underlying measure is mo. We assume a loss function which
is equal to 1 if 6 = O and a decision is made in favour of "6 = O" and
which is identically O if 6 # 0.2 statistical test consists of a
stopping time T of Brownian motion where stopping means a decision in

favour of "@ # O". The Bayes risk for this problem is given by
o«
(14) P (T) = yP (T<=)+ (1-y)c HmumaeeA\mmv\on.
-

The objective is to find a stopping rule em which minimizes (14). For
cost ¢ sufficiently small the optimal stopping rule am is a test of power
one. A similar problem has been studied by Pollak (1978) who assumed an
indifference zone in the parameter space.

The cost "c8" may at first seem unusual. The factor 62 is the Kullback-
4ap
Leibler information number, meoa QMQ\A + Which quantifies the separation
0,1
of the measures vo and Mm. Its meaning is clarified by the following
consideration. Let us consider two testing problems with simple hypo-

theses:

1) mo : 8 =0 versus mg : 8 =8

2) mo : 8§ = 0 versus mA : 8 =8

with mw >0, i =1,2,. Let nH~ i = 1,2 denote the sampling lengths. The
level-a Neyman-Pearson tests for both problems have the same power if
and only if oﬂnd = omnm. (This follows from the power function of a
Neyman-Pearson test of level a: eA|OQ + 8vt)). Thus the factor 62 stand-
ardizes the sampling lengths in such a way that the embedded simple
testing problems are of equal difficulty. Besides this statistical
aspect there is a basic mathematical reason for this choice of the

sampling costs. Since in our decision problem (14), an indifference zone

1

does not occur and since moe = » (because of mer < ®}< 1) we have

lim Mme = «, More information about the singularity is provided by a
8~0 )
lemma of Darling-Robbins (1968). It states that for every stopping rule

with MOAH < )<

(15) EqT 22b/6* where b = -log moAHAsv.

Equality in (15) holds for the stopping rules

4ap
b
(16) Ty = inf{e>0]g5 2t 2 eP).
o,t
dpg . . . .
Here MMIhm denotes the likelihood ratio (Radon-Nikodym derivative)
o,t ) )
of m® SHmT respect to mo given the path W(u), O € u € t. It is given by
dp
et mxvaozﬂdvnmmwﬁv.
dp 2
o,t

According to (15) the expected sample size MQH of a test of power one

considered as a function of 6 has a pole at & = O. The choice of "c" or
"c|6|" instead of "c8?" would imply that tests of power one have an

infinite Bayes risk for the prior we have chosen, since
[18|*ETe (VE0) /EdB= for i=0,1.

A precise description of the pole of EGT is given by Farrell (1964),
Robbins-Siegmund (1973) and Jennen-Lerche (1982). For the result of the
latter see Corollary 5.3 of Chapter I. The sampling costs "c6?" remove
the nonintegrability of the singularity of Mme for a large class of

tests of power one, although lim sup o~Mme = o still holds. For instance
6-0
for all tests of power one defined by

T = inf{t>0]|W(t)]|2y(t)} -
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where the function Y{t) is concave and Yit) = oAnm\wnmv when t + «

(with € > 0O arbitrary small), the Bayes risk (14) is finite. This follows
from the inequality omma < eAmmev~ which is a ¢onsequence of Wald's

lemma and Jensen's inequality. Therefore by the choice of the sampling
costs as "c6*" the concept of Bayes tests of power one becomes an
interesting topic to study.

The related problem for simple hypotheses can be solved easily. The
Bayes risk is given by

(17) p(T) = <werA8v+Adz<v0m~m T

8

and the issue is to find the minimizing stopping rule. A direct appli-
cation of (15) and (16) yields the optimal stopping time

(18) TL = inf{t>0|W(t) 2 log w\m+w®ﬁw

with a = <Awain<vov|q when a > 1 and am = O otherwise. The minimal

Bayes risk is then given by
(19) DAHMV = 2(1-y)cllog a + 1].

(For more details see the last part of the proof of Theorem 4.2).

Here the choice of the sampling costs leads to a solution which is in-
dependent of 6., This becomes obvious when one expresses T* in another
c

way. It can be rewritten as em = Inf{t>0|y(W(t),t) < Awm } where
2c

.<AX~ﬂv = I"K’nmlll'
Po,t

<+:|§% L= (x)
o,t

denotes the posterior probability of the parameter "g" at (x,t) with

respect to the prior F = <mo + Aan<vam. Then T% has the intuitive meaning
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"stop when the posterior probability of the hypothesis "O" is too small".
This is just a simple Bayes rule or equivalently the one-sided sequential
probability ratio test (16).

The study in Chapter II shows that simple Bayes rules which stop when
the posterior mass of the hypothesis "0 = O" is too small, are also
nearly optimal for the risk (14). These rules were already discussed by
Cornfield (1966) on a heuristical basis.

Each simple Bayes rule is a stopping rule of the type (4) with a boundary

equal to ¥(t) = £((t+r) (Log(ZE) + 2 log b)) /2 yitn b - Ty - For

1/2

large t this boundary asymptotically grows like (t log t) , which 1is
1/2 of the law of the

iterated logarithm. As a consequence of our results the minimal Bayes

faster than the limiting growth rate (2t log log t)

risk can be approximated by that of simple Bayes rules within o(c) when
¢ » O, which can be calculated. For the precise statement see the
Theorems 1.1, 4.2, 4.3 and 4.4 of Chapter II and their corollaries. The
one-sided problem is discussed in Theorem 4.5. The main result was first
derived heuristically with the tangent-approximation. For this approach

see Section 2.

The second problem discussed in Chapter II is testing the sign of the
drift 6 of Brownian motion W(t). About it a substantial literature

already exists (e.g. Chernoff (1961), (1972), Bather (1962)). The para-
meter sets of the hypothesis mo and the alternative mA are given by
oo = {6 <0} and by oA = {8 >0}. We assume O-1 loss, the usual loss

structure for testing. The observation costs are chosen again as c#6?
where ¢ is a positive constant and § is the drift of the observed Brownian
motion. On the parameter space oo U @4 we put the normal prior G(d6) =

- ; 21 -y2/2
(YL (8 - §))/Tds with ¢(y) = 7o e
procedure (T,6), consisting of a stopping time T of W and a final

. The Bayes risk for a decision

decision rule §, is given by

[o]
(20) 0(T,8) = [(Pg{H, rejected (§)}+c6?E,T)G(de)

+ %AMQﬁmA rejected Aavv+0o~moevaaov.
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Let G denote the posterior distribution of & given that the process
!
. . X+YL 1
(W(s),s) has reached (x,t). It is equal to mem = zAw+m , n+nv where

N{(p,0?) denotes the normal distribution with mean p and variance o?.

For A > O we define the simple Bayes rule T,= inf{t>0] min G (e;)
A ioony TW(e) e
’

¢ {(-2)} where ¢ denotes the standard normal distribution function. It can

A

also be expressed as .

- W(t)+rp| .
Ty psmﬁnvo_ Ve z 1k

Let 6* denote the final decision rule which rejects H if and only if
W(T)+ru > O. In Theorem 5.1 it is shown that for a certain X(c), the
palr Ae>A0v~a*v minimizes the Bayes risk (20). In Section 5 it is also
explained why the repeated significance test is the natural counterpart
to Wald's sequential likelihood ratio test for composite hypotheses.

This study is organized as follows. The first two sections of Chapter I
describe two general methods for the calculation of curved boundary
first passage distributions. In Section 2 it is shown that they are
equivalent up to time inversion. In Section 3 from the general method
of images (described in Section 1) the tangent approximation is derived.
The tangent approximation is discussed for receding boundaries in
Section 4 and for a fixed boundary when the time tends to infinity in
Section 5. Also necessary and sufficient conditions and refinements for
the tangent approximation are given there. In the Supplement to Chapter
I the connection to saddlepoint approximations is discussed.

In Chapter II the first section introduces Bayes tests of power one, and
the second gives a heuristic derivation of the optimal boundaries using
the tangent approximation. In Section 3 some ideas about a statistical
law of the iterated logarithm are discussed. Section 4 gives proofs
about the shape of Bayes tests of power one, m&m Section 5 states an
optimal property for the repeated significance test. The plan of this
chapter follows the historical development of the results.

Some results which are stated in this work are not, at least partially,
due to the author. These exceptions are the Theorems 1.3 (Widder), 2.1
(Robbins-Siegmund), 2.2 (Widder, Robbins-Siegmund) and Theorem 5.2
(Novikov) of Chapter I.
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In Chapter I the first part of Section 3 is based on joint work with
H.E. Daniels. The results of Section 4 are mainly those of Jennen-Lerche
(1981), although the proof of Theorem 4.1 is new. Theorem 4.4 is a
version of a result of Jennen (1985). The results of Chapter II are

contained in the papers of Lerche (1985), (1986).
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CHAPTER I

CURVED BOUNDARY FIRST PASSAGE DISTRIBUTIONS
OF BROWNIAN MOTION
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1. The general method of images for the diffusion equation

The method of images for the diffusion equation is a simple analytical
way to calculate first exit distributions of Brownian motion over curved
boundaries. The idea behind it can be described in the following way:
one considers a variety of "sources" which is distributed over the posi-
tive space axis at time zero according to a positive measure F and an
extra source with unit mass at zero. The sources are thought of as the
starting positions of Brownian motions to which one attributes negative
weights according to F and a single positive unit weight when starting
at 0. The superposition of all these processes is being observed.

The set of all space-time points in which the processes with positive
and negative weights absorb each other, can be represented as a function
of time called y(t). Let us consider now the Brownian motion starting at
0 with absorption at the boundary ¢. On the set {(x,t) |xsy(t)} the
method of images yields the distribution of the part of Brownian motion
which is not absorbed at ¢ (Theorem 1.1).

Using this result a rather explicit formula for the density of the first
exit distribution can be given (Theorem 1.2). Theorem 1.3 states that
the method of images is most general in some sense. Several examples
demonstrate the use of the method.

For a precise description let us assume that F is a positive, o-finite
— 2

measure with HMQA\MovmamovAs for all e>0. Here eaxvnﬂmﬂ e ¥ \m. Let a>0

and let

(0 nGotrszz oR-a! [ e 3zhrae).
o

The function h satisfies the diffusion equation wnquwws on R XHW+ “
where ﬁ~+qu~8v. The differentiation under the integral of (1.1) is i
valid by an argument similar to that of Copson (1975, p. 253). Let

x=y(t) denote the unique solution of the implicit equation

(1.2) h(x,t)=0.

19

It exists since (1.2) after division by ﬂWeAmWV is equivalent to the

implicit equation

(.3 &0

i
o

with f(y,s) = Mwmxwﬁo<|W®~wvaQ®V\ for which an unique solution exists.

Let W(t) denote the standard Brownian motion with starting point at O
at time 0 and let T denote the stopping time defined by
T=inf {t>0|W(t) 2y (t) }, which obviously can be rewritten as

T=inf{t>0|h(W(t),t)=0}

=ing{e>0 £ (REL, ) = a),

Theorem 1.1: Let C={(x,t)|xsy(t)}. On C holds

(1.4) P(T>t, W(t)edx)=h(x,t)dx
=x)= Loy = a e
(1.5) Eemn_zAS»xTT:?.S\T\me s = £

Statement (1.5) follows from (1.4) by conditioning, which means by

division with ww.e Gxﬂv.

The following proof of (1.4} uses analytical tools. By an uniqueness
theorem for the solutions of a certain boundary value problem of the
forward diffusion equation the solutions constructed by the method of
images and the probabilistic one given by P(T>t,W(t)€dx)/dx, coincide.
A probabilistic proof of statement (1.4), which uses martingale argu-

ments, is sketched in Section 2.

Proof: The function h satisfies the following equations:

(1.6) 3,h = 322h on C,
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h{y(t),t) =0 for all t>0,

:A.~ovnao on

(+0)1].

Here &o denotes the Dirac-measure at 0. We note that ¢ (+0)=lim {(t)

ty0
exists according to Lemma 1.2 below. Now we apply some uniqueness

arguments at first for a classical situation.
Case 1: We assume that €*>0 where 6*=inf{y|F(0,yl>01}.

According to Lemma 1.1 and 1.2, $(+0)>0 and ¢ is infinitely often con-
tinuously differentiable. Now a uniqueness theorem for the boundary
value problem (1.6) (cf. Friedman (1964), Theorem 16) ylelds that h is
uniquely determined. On the other hand there is also a natural probabil-
istic solution of the boundary value problem (1.6). Let

P(T>t, W(t)€dx) = p(x,t)dx .

pi{x,t) denotes the density in the space-time point (x,t) of the part of
Brownian motion which is not absorbed by the boundary ¢ up to time t.
The function p also solves the boundary value problem (1.6). Thus by
the uniqueness theorem, p=h on C and (1.4) moHHosmA*w.

Case 2: Now we drop the assumption "8*>0" and allow 6*=0.

For this case a general uniqueness theorem seems to be unknown and we

therefore have to proceed somewhat differently.

Beside the original setup with functions h,y and a stopping time T we

consider related situations defined as follows. For o>0 let

1 X
TQAX~ﬁqu|lI GA

l

1% 1
%ww T!EE:

{*)

The construction of Friedman also yields that h(x,t) is equal to the

Green's function moao.o\x~wv of the problem, evaluated at (0,0) and
(x,t)

———
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and let Uy (t) denote the solution of h Ac (£),t)=0 HQ denotes the
oonnmmmosapba stopping time. Let @ (x, wv|wAA >t,W(t)edx) /dx. This setup
satisfies the assumptions of case A and n:mmmmowm statement (1.4) holds

for it:

SQAx\ﬁv = UQAx\mv.

Now let a~0. Obviously h,(x, t)yh(x,t) (converges decreasingly) and
epanzzeﬂnu. Therefore mwmo hix,t}=lim p, {(x,t) holds. Thus statement

a0
(1.4) follows if
(1.7) lim mQAx~ﬁvumﬁﬂvﬂ~zAﬁvaxw\mx holds.
[ Rg?]
But (1.7) is equivalent to
(1.8)  lim P(T, vw_fi =x) =P (T>t|W(t)=x).

o~>0

The last statement follows from Lemma 1.3, if eQ+e uniformly on [0,£]
and ¥ is concave, differentiable and belongs to the upper class at t=0.
Since eQAmv(eAmv for all ss$t, the uniform convergence follows. Lemma 1.1
yields the concavity of V. The upper class property of ¥ can be seen as
follows. According to the work of Petrowski (1935, p. 388), the function
hix,t) is an "Irregularitdtsbarriere" for the space-time point (0,0) and
therefore (0,0) in the classical sense is a non-regular point for the
Dirichlet-problem of the forward diffusion equation. Thus according to
Theorem 3.1 of Doob (1955), the point (0,0) is also non-regular in the
probabilistic sense, which means that P{(T>0)=1. But this means that ¥

is an upper class function at t=0.

Integration yields the following corollary.

Corollary 1.1:

o

(1,91 p(rst)=1-0 (St 4a™t o (B0 p (g0,
Ve J05E
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The properties of the boundaries obtained by the method of images are
described in the following lemmas. Several examples are given below

Theorem 1.2.

Lemma 1.1: The boundary V has th

©
)
~ O
e
¢

al) ¥ Zs tnfinitely often continuous

b) y{t)/t is monotone decreasing,

c) ¢ Zs concave.

Proof: Statement a) follows from the theorem about the implicit functions
. X 1 1

applied to mAm~Mvnamxvaox\dlwou\ﬁvmagmv since by definition

(1.10) mAEmmw\mv = a holds .

From (1.10) also b) follows.

To prove statement c) we put n(s)=y(t) /t and s=1/t. Since n(s) satisfies

the implicit equation mu\mxmaosamV:WQNMvamoV\ Holder's inequality yields
that n(s) is concave and thus n"<0. To show that eawvnnJAﬁlgv is concave,
it is sufficient that y"(£)<0. But " (t)=n"(t"') /ti<0.

coaga

Lemma 1.2: Let 8*=inf{y|F(0,y]>0}20. Then linm v(t)=06*/2,
t-+0

Proof: We argue similarly as Robbins~-Siegmund (1973, p. 100). At first

we show by contradiction that

(1.11)  lim inf y(t) 2 o*/2 .

t-+0

For this we assume that for an O<e<i lim inf Y(t)<(6*%-¢) /2. Thus for

a certain sequence ﬁH&o €20 -
1
° By(t.)/t,~-z0%/t,
oca=f e PR 27 TTpig0y
@,»
o 381%=c) /e -Toox (k] T-c) -£o7
|%*m e F(d9)
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F(dg) -0 .

This contradiction proves (1.11). Similarly we get lim sup y(t)<5%/2,
t-0
which together with (1.11) yields the statement of the lemma.
uoo

Lemma 1.3: Let ﬁe:-SWAW. denote a sequence of positive boundaries which
(as n + =) converge uniformiy on [0,t] to a boundary y. Let enwe on
[0,t] for all n and let U be a differentiable concave upper class func-

tion of Brownian motion at 0. Then for every x < yY(t)

lim P(W(u)zy (u)  for some Osu<t|W(t)=x)

n->o

= P(W(u)zy(u) for some Osu<t|W(t)=x).

Proof: Let e:uwsmﬁcvoﬁzﬂcvwebacvw and T be defined similarly. By the
assumptions for a given a>0 we can choose a §>0 such that
P(T<S)+P(t-8sT<t)<a. Let €>0 be so small that

2¢ (e+P (8) +(t=-8)v' (8§)-x)/ (t-8)2a. There exists an n, such that

sup (¥_(v)-y(v))<e for all n2n_. Then
Osvst O ©

P{O<T<t [W(t)=x)~P (O<T <t|W(t)=x)

=P (O<T<t,T >t|W(t)=x)

t
uhmﬁammcvaHSVn_zAsvneAcv~2Anvuxv
o

t-8
Sa+ [ P(T€AUIP(W(s)<y(s)+c for ussst|W(u)=y(u),W(t)=x),
$

By the concavity of ¢ and a result about straight-line crossing proba=-

bilities (see Example 1 below)
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P(W(s)<y(s)+e for ussst|W{u)=y(u),W(t)=x)
SPAW (V) <g+y (u)+vy' (u) ,0<v<t=u|W(0) =y (u),W (t-u) =x)

=1-exp(-2e (e+y (u) +(t-u)y' (u)-x)/(t-u)) .

Thus the above inequalities can be continued by

sat2e (e+P (S)+ (£=8)y ' (8)-x) /{t=§)

f2a for all sw:o .

aog

Let p(t) denote the density of the distribution of T. It exists and is
continuous since ¥ is continuously differentiable (cf.
The following well known lemma states precisely what is clear intui-

tively; p can be computed from h by differentiation.

Lemma 1.4:

_ 1
PO = Janiet -

Proof: By Theorem 1.1 we have

Y(t)

(1.12)  p(T>t) = |

hiy,t)dy .
Noting that h(¥(t),t)=0, differentiation of (1.12) yields

=2p(t)=2 mm P(T>t)

oM
Ie ! h hy,t)dy)

Strassen (1967)}).

RERIs. ]

25

y(t)

=2 a

d hly,tldy+20 ' () h (v (t),t)

w(t)
= wwwA%-nvmw

—cc

umdix~nv_xn€Aﬁv .

With the help of this lemma the density p can be calculated rather
explicitly.

Theorem 1.2:

1.13) - E(o] (w(t),t)) P (t)
where
foo C=2LE))p (qg)
E(8] (W(t),t))= o S .
Eﬁl.ﬁmlmai
Proof: By Lemma 1.4 and the definition of h, given by (1.1), we get

A wrn t)
mu:uvl X _ x= e:..v
v (t) eﬁﬁv 1% y(e)-0 . wi(t)-8
377 ¢ Iwrca T
T e)-8) 6 (EL=8) b (44
- —15 o= fyey-ant @ E
2t v/t o Aﬁvv

aoo
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HAeAnvlmveﬁevmv- JF (a6)
= —375 oy o)
2t vt HeAx$muuﬂxvaa@v
o

1 VL) .
MMwwM eA\m JE@B | (¢ () ,t)) .

The step preceding the last one, follows from the definition of V¥
since

VIEN ) ot L )-8 faey
& ot - a ot grae

onoo

A similar result holds when we consider instead of Brownian motion with-
out drift such one with drift. We denote by vmﬁnv the density of the
distribution of T under the measure of Brownian motion with drift . By
the Cameron-Martin-Girsanov formula (see Liptser-Shiryayev (1977)) we
have

£ (t)-de7e
(1.14) wmanvnm voﬁnv .

Combining this formula with (1.13) yields the following result.

Corollary 1.2:

_E(8lt),e)) | wit)-tt
(1.15)  py(t)= 372 6 e )

It is quite interesting to note that the factor E(68](y(t),t)) does not
change if the drift changes. The quantity E(8|¢(t),t) can be inter-
preted as the posterior expectation, with respect to the prior F, of
the hitting point 6 on the vertical axis at time 0 of the backward
running Brownian motion. Its meaning in the formula (1.15) will become
clearer in the next sections. Before we give several examples we note
that similar results hold also for the two-sided boundaries, which can

be constructed as follows. For a positive measure with mass on (=0, +x)
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and with F({0})=0, we define

X

h(x,t)= ﬂw ¢ ()" f QW eﬁanvm (dg) .

There exist positive and negative valued functions v, and ¢_ with
¥_<¥, with the properties h(y_ (t},t)=0 and h(y_(t),t)=0 for all ﬁAﬁm

with a certain ﬁwms. When we define the stopping time T as

T=inf{o<tst [W(EIE(y_(£), v (t))},

then the analogous results to the preceeding ones hold.

Now we present several examples including also those with two-sided

boundaries. For further informations see Daniels (1982).
Example 1: mammvnmmo. Then

-1 xlwm

hix,t)= —= 4 E)-a

(
e 70

Y(t)=6+bt with b= 10Z2

The Theorems 1.1 and 1.2 yield
28 <0(t)
P(Tst|W(t)=x)=exp (- Z=(0+bt~x)) for xsy(t),

-2 t-0
P(Tgt)=1- eAUWHoV+m oUeAWQul ,

ennvv- the well-known Bachelier-Levy formula.

p(t)= IINI ¢ (

Example 2: mAmmvugdam+Qmmmm with QA+QNHA.

- a -
hix,t) = e o -5 o (55 42 ¢(5228) ] -
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The function ¥ satisfies the equation

2 !
a=oy mxvgl o, 8 M¢HV+QN exp (- 28% mmmkmww

It can be expressed as

£ 1,22 QN =07 /e, 1/2,

v (t)=ge- )

For t » 0 holds y(t) ~ w®+u t  and

1
for t + = holds ¥(t) ~ b.,t with

2

U;uwomAW\de\m and Umuwoaﬁm\pmv\Awov .

P(T<t|W (e} =x) =exp (-2 (§ + b t-x)) rexp (- mwﬁo+umn|xvv

for x gy (t) .

_EGit),t)) Y (t) .
plt)= 372 ¢ ( 7 ) with

8-y (t) 28—y (£)
mpéeAux%w||v+~mQ~ 9A||umnllv

Bl ey e () 20~y (£)
[*hed - .
oy ¢ w0, o (2ESELE),

Example 3: F(d0)=g8_o+56,, 630.

¥, () =£t/0 cosh™'(a exp(9?/2t)).

These functions are only well defined for t with 1<a exp(8?/2t). This
is always the case for a>1. For a<1 the boundary is closed at

29

1

t =87/(2 log a '). As Daniels (1982) pointed out,

is open and behaves for large t like a parabola

v, te - eedeny V20T

-1

P (Tst|W(t)=x) =a mxmgumN\Nn\OOm:Am%v

for a=1 the boundary

for all [x|sy, (t) and all a and t with T<a exp(8?/2t). Since

v, (E)e
sinh( € )

E(0] (v, (£),t))=8 v, (€18 '
cosh ( T )

o mwarﬂmhmmwwv b, (t)

p, (t)= 50377 3 exp (87 /28E) o=

Example 4: F(d6)= wmm on R.
hix,t)= ww eﬁww,‘mué\\Mﬂ .

for 0<tsga?

p, (E)=tv/t HoaAm }

mAeun_zAa,nxvnﬁmW GAmwv%-a

L) L (B
Anvl lll%l eA ) .

Here E(0| (p, (), t))=y, (t

for |x[sv, (t) and t<a®
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Example 5: F(ag)=e ? wmm on R, XER

21 X, __—-1 . x (x=2t)?

hix,t)= 7 eAﬂmv a eAumvmva|1|MMIlw.
= a’

b, (£) =ittt log(T-) .

E(e] (y, (€),£)) =y, (£)-2t

© y, (E)-at Ae+anwv
p,(t)= —= o (== .
£ ww\w JE

This result describes the boundary of Example 4 shifted by At.

agrees with Corollary 1.2.

Example 6: F(d8)=/T ¢(/T6)d® on R.

Xy (It vg\

_ 1
hix,t)= VE eﬁ\n rt+1

2 Alllmwlll -2
eXP 3t (re+r 1)~ 2¢'2

eHAnVuHAAHﬁ+AVAHom w~+HoaAﬁwmAv,d\m
=1, rt ,1/2 x?
P(Tgt|Wit)=x)=a " (G5g) " Texp lapireryy
v, (t)
E(6] (p, (£),t))= P )
v, (£) y, ()

Thus p, (t)= ( )y .
* mﬁnﬁ+4vww\m ¢ 43

Example 7: F(d0)= 7y= 1o .-

umvuw-deAmw,\\Mﬂ .

= L
h(x,t)= 7E eﬁxn

y(t) is given as the solution of the implicit equation

y) for |x[sy, (£).

31
%2 Xy oo a?
T+ 2 log o) = logl 5= ).
- 2
Let h(y)=y?+2 log ¢(y) ~ y*> for y-«=. Then y(t)=/t h AAHomAﬂW'v. It

holds v(t)=/E Tog(1/6) (1+0(1)) for £ » 0 and y(t)=-S(1+0(1)) for t = =.
Let n(y)=¢(y)/3{y). Then

ax) = X4y !
P(T<t |[W(t)=x)=(a ﬂA\mvv ,

E(o] (b (e}, )=y (6) +/E wdED),

pit)
ple)= (2l e o (L)
2372 2t vt

Finally a remark on the generality of the approach just presented.
According to the following Choquet-type representation theorem due to
wWidder (1944), the method of images uses all positive harmonic functions
on R xR as will be explained below.

For further information on this type of theorem see Doob (1984, p. 290)
and Robbins-Siegmund (1973).

Theorem 1,3: Let u be a non=-negative and continuous function on

I=R x (0,8), 0<8sw. The following statements are equivalent:
(i) u satisfies the diffusion equation wﬁCuWwwc on I and

lim u{x,t)=0 for all £<0.
(x,t)~(&,0)}

(ii) There exists a posttive O-finite measure F on [0,®) such that u

can be represented as

w1 X=6

u(x,t)=f_ 7 ¢ (g IF@e) .

The meaning of the result for the method of images is the following. Let

y denote a smooth upper class boundary at zero and let
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T=inf{t>0|W(t) 2y (t)}. Let p(x,t)=P(T>t,W(t)€dx)/dx. Then on 2. The method of weighted likelihood functions
C={(x,t) |x<y(t)},p can be expressed as mgx\wvanQAvanmﬁx~ﬁv where g
fulfills the Adiffusion equation on C. If g satisfies the diffusion

equation in the whole plane R x R, and is positive there, then by ! A probabilistic way to derive first exit distributions over straight

T i ; 4 . .

heorem 1.3, p has the form (1.7), which shows that the method of images lines and curved boundaries is presented in this section. It uses the
is a rather general approach. fact that mixtures of likelihood functions are positive martingales.

Although the basic result of this section is well known (cf. Robbins-
Siegmund (1973)), its relation to other methods for computing exit
distributions was left in the dark until recently. Surprisingly the
connection between the approach described here and the general method
of images, described in the preceding section, is basic and simple:
both methods are equivalent up to time inversion. We shall develop this
connection in detail. It will lead us to a simple martingale proof of
Theorem 1.1 at the end of this section.

For simplicity we again consider the one-sided case. Let F be a positive

g-finite measure on IR . Let

fix,t) = meonxIWoﬁwvamou

and let us assume that there exists a point Axo\no, with maxo~nouA8.
Then £(x,t)<» for all x€R and nvno. This is a consequence of the

equation
i X=K o g% X-X ox |Wo~ﬁ
M £lx,t) = (6(——220)" o (VETE, (6 g=p2) e ° OF(das).
xnlﬁo o ]

Let O<a<» and let us denote the solution of the equation

i f(x,t) = a

by xu:wAﬁv for mwno. This solution is uniquely determined for all ¢wno

and

(2.1) f(x,t) < a if and only if x < JmAnv N
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holds. Similar arguments as in Lemma 1.1 yield that n, has the following

properties for t 2 ﬁo" Ny is monotone increasing, concave and infinitely

often continuously differentiable. For the standard Brownian motion W(t)

we define the stopping time

(2.2) T = inf{t>t [£(W(t),t) za}

if the infimum exists and T== otherwise. By (2.1) we get the equivalent
representation

(2.3) T = H:mﬁnvno_zAnv w:mvay.

The following result is due to Robbins-Siegmund (1970).

Theorem 2.1: Let oAmAxo~novmmA8. Then
_ _o-1
(2.4) P(t sT<o | Wit )=x ) = a flx .t)).

Integration of (2.4) yields the following corollary.

Corollary 2.1:

JAﬁovxmno
= —=—=)F(dg) .
to o SN

o}

(2.5) @AWOMHASV = 1-0

For the proof of Theorem 2.1 it is convenient to introduce some addi-
tional notation.

m%x~¢v denotes the measure of Brownian motion W with drift 8 which
starts in x at time t. It is defined on the space C{t,») of continuous
functions on [t,«=). mw denotes the o-algebra on (C[t,») which is gener-
ated by W(u), tsuss. The restriction of the measure m%x~ﬁv on wM is
denoted by wa\nv

9,s
instead of fixed times s. The measures P

. This notation is also used for stopping times §

(x,t) (x,t) . .
8,8 and Mm.\m with 6=6' are

absolutely continuous with respect to each other. By the Cameron-Martin-

35

Girsanov formula the Radon-Nikodym derivative {the likelihood function)

on mw is given by

amAx~nv
015 . oxp((6-8') (W(s)-x)=n(87-8"'7) (s-t))
(2.6) p TR exp >
mo.,m

The following proof uses a well known argument due to Ville and Wald.

Proof of Theorem 2.1: Let

(0,0) a (0,0)
e ¢ Porto (x yeas)
= Q. .
F . ¢ d9) 6.0y %) F(d9) [ —6738) %o 8
o’ o dap £ @mo €
Oy o 'Ly
(x_,t ) )
Let Q 0" O QJenote the probability measure
(x_,t ) (x_,t ) t ) (x_,t )
Q o'"o u%m o’"o F (d6). On the o-algebra F © with t>t_,Q ° ©
0 xo\no t [e]
(x ,t)
and P o' "o are absolutely continuous with respect to each other. By
o

(2.6) the Radon-Nikodym derivative is given by

momxo.nov HQ@wxm}ov )
(2.7) L, = = L F 9
t CAO~W ) QWAXO\ﬁOV vn0~ﬁ0
mwo~ﬁ © o,t
1
= f{exp(g (W(t) -x }-38% (t-t )IF . (d9)
o’ o
. EWE) .t
mﬁxo~nov
(xgst,) ) .
Since bmg is a positive Q -martingale the optional stopping

theorem, (2.7) and (2.3) (the definition of T) yield the following

equation:

H_IA Q.OAXO ~ﬂ0v

ot -
(2.8) m%xo o) (e sTsey) = N
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£wr) T tag Ko ts!

"
h
O?
A

= a7t (xg tg) 0 0 PO (e smst )

(x_,t_)
We show now that lim @ © © ﬁnoMHMﬁ4wn4~ which together with (2.8)

t ., >0

1
yields the proof.

Let 6*=inf{0|F(0,08]>0}. It is sufficient to show that for all mOvo*\N

Am.wu mwwo.novAnoMeAsv ué.

Let §>0 and £>0 be chosen such that

8*s8< +€<20_  with F([8,8+c])>0.

£(W(t),t) = mevﬁmzﬁwvuwo~nvaamv

2 min

exp (OW(t) -30%t) FL§,B+e].
6€l0,0+¢e]

The exponent of this expression for t - = grows under P at least like

9
o

swsaz oﬁ@OIWm_ﬁ\ sswosvwn:moroHomOMmﬁm:mmﬁo H:mwzwww.mmﬁdm
9€E[6,6+e] .

definition of T this yields (2.9) and completes the proof.

Example 1: wnmmo. Then :mAnan+mn with b=log a/28. By Theorem 2.1

P(W(t) zb+ot for some t>t |W(t, )=x )= exp (=26 (bret ~x.)),
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and by Corollary 2.1
b+gt b-5t
P(W(t) zbtot for t>t ) = 1-=0(——= )+e 28by (—2) .
/ty /e

Example 2: F(d9)= www on R. Here f£(x,t)=t /% exp(x?/2t) and
smAnvuuAﬁAHom t + log wNVVA\N which is defined for nvwlm. Then by

Theorem 2.1

2

“1em1/2 for t_>»a “.
o

= = 2
wAﬁ0meA8_zAnov|xov = a o mxwﬁxo\wwov

Example 3: mAmmun\MeA\MQvau05dww. Then mAx-nvn;n+n exp (x?/2(t+r)) and
))
r

gmvanHAAw+HVAHom a?+log( . Theorem 2.1 yields

1, ¢ 1/
t +r
o

(

mnﬂomeAs_zAﬁovuxovumn ) wmxwaxu\wﬁﬁo+nvv.

1

We note that this expression is equal to a @ for x5t =0.

[o]

Example 4: Let §>0.

F(d8) = 8d6/(6(log A\mv...AHocs A;\mvv_+av for voAg\mb.

Here Hoamxnwoaﬁwoo x), e? =e® etc,

Robbins~Siegmund (1970) have shown that for nz3

5
- 3 1 o
:wﬁnv-mmﬁAyommn+mpomuﬁ+xmgwomxﬁ+AA+avHoas+4n +log(za//T)+o(1)] as tox.

Here mAeAsszovuovum-A.

Example 5: F(d8)= <mxvﬁnQo|vam on R , with a,B8,y > 0 and a(8) and
y(8) chosen such that F is a probability measure. According to Robbins-
Siegmund (1970)
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iy
+
w

™

+

oW

n_(t) t

(1+o0 (1)) as t>= and

mAeAg_sonuovum-A.

Example 6: It is possible to develop the method described in this

section further such that one can also calculate certain probabilities
for bounded exit times. Using the martingale of Example 3, Siegmund
{1977) has shown that

P(|W(t)|2/2E(x+E) for some O<tgat.) =

=R m-mh*l eI 235/ (1+001))
1
as a > «,

Now we explain the relation between the method of weighted likelihood

functions and the method of images. At first we repeat the definitions

of the boundaries ewAmv and :wAnv. According to (1.2) and (1.3) emAmv is

defined as the solution %newAmv of the implicit equation

4 ‘ a 4
AN.Qov mﬁm /3 = a  with flx,t) = %mxonx-M®nnvam®v.

According to (2.2) Jwﬁnv is defined as the solution xnsmﬂwv of the
implicit equation f(x,t)=a. The equations (2.2) and (2.10) together

yield that the boundaries for nnA

s satisfy the equations

v, (s) ;mAnv
(2.11) -5 = zWAﬁV and GWAmw == - -

Now Theorem 1.1 states that for the Brownian Bridge zo which starts in

0 at time 0 and ends in %oMewﬁmov at time s,

Zﬁmo\mo,
(z.12) on\ov Azoﬁmv 2 emﬁmv for some oAmMmov =a f(—,—).

39

On the other hand Theorem 2.2 states that for the Brownian motion W
starting in xg at time ts holds
(2.13) p'¥orto) (y(t) 2 n,(t) for some t st<m ) = a e (x_,t)

: 2 Mg o~ o' 0""

Now we note, that under the time-inversion transformation

(2.14) x

i
SR
23
u

a Brownian Bridge with endpoints (8,0} and Awo.mov~ is mapped into a
Yo
So
infinity. Therefore the formulas (2.12) and (2.13) are equivalent up to

Brownian motion with drift 8 starting at ( .MPV and running up to
o

time inversion (this means the one formula follows from the other by
applying the time inversion transformation (2.14) and vice versa). The
reader is invited to check some of the examples of both sections on

their correspondence.

These observations raise the further leading question: how are the

methods themselves related?

The probabilistic meaning of the transformation (2.14) corresponds to
the following analytical meaning which was discovered by Appell (1892).

Under analysts the transformation (2.14) is also known as the Appell-
1

transformation. Let u satisfy the forward diffusion egquation wnCum

wws
in a region cc of the space~time plane Rx R . Let

mﬁw~mvncAW -Wv\\NeAWWV. Then f satisfies the backward diffusion equation

A - 4 n NH
wmm+MWWm = 0 in Dg {(y,s)] (£, 5)€D,}

and vice versa. Thus the Appell-transformation establishes a duality
relation between solutions of the forward and backward diffusion
equations. We can use this fact to dualize Theorem 1.3, the representa-
tion theorem of Widder, to one for the harmonic functions of the back-
ward diffusion equation. Here we give a version due to Robbins-Siegmund
(1973) on IR.
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Theorem 2.2: Let f be a non-negative and continuous function on

D=R x(1,®) where 031<=, The following statements are equivalent:

1526 =0 onD.

B3ty y

11) There exists a positive O-finite measure F such that

1

Flx,t) = | exp (8x-5
o

82t)F(de).
1i1) £(WI(t) ,t) <s a positive martingale of the space-time Brownian

motion on D.

From the Theorems 1.3 and 2.2 we conclude that the method of images and
the method of weighted likelihood functions use the different character-
izing properties of the same objects, the harmonic functions for the
forward and backward diffusion equations. We conclude further from the
representation theorems that both methods use all the non-negative

harmonic functions

Both methods also have the same serious drawback. That is, only for few
mixing measures the implicitly defined boundaries can be calculated
explicitly. Robbins-Siegmund studied in several papers how the bounda-
ries depend on the underlying mixing measure and constructed boundaries

with the most typical growth rates (see p. 36 and 37).

The problem, which concave boundaries can be constructed from the two
described methods, is to our knowledge not yet solved.

We close this section with a sketch of a probabilistic proof of Theorem
1.1 by dualizing the proof of Theorem 2.1 with the help of (2.14).

A probabilistic proof of Theorem 1.1, (1.5):

Let WMMOmwov denote the measure of the Brownian Bridge process zoAcv
’

) ~5
with endpoints (9,0) and A%o~mov. Let mwo denote the o¢-algebra which is

generated from W_(u), ssu<s_ . The measures mMMWm%ov and mewWwov are

; =S
absolutely continuous with respect to each other on mmo and their like-

lihood-ratio is given by
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(Yo :80) W
(2.15) 520 | = exptoreit - Yoy 111y,
1 G e © T G

This can be seen either by direct calculation or by applying the time

inversion transformation to the formula (2.6). Let
eAm-movam@,
/o
Fygisg @8 (&=Yo)r (a9)
o
o {e =

y
mxwamlmu W% /s )F(d8)

fexp(s¥@ - 162 /s ) ¥ (d0)
o]

Let §{¥orSo) - (pl¥orSolg (d6) . Then by (2.15)

(6,0) YorSq

W_(s) 1 Y 1

z(¥or80) o
> _ do = f(-2—, ) /£(=2,—) holds
(2.16) Iy = “Sroson Wmo s i s]

(0,0) S

1 ~ R .
with mﬁn.<vnhmxwﬁownwo~<wmAmov. Let otmcmﬁOAmmmo_aoAmy 2 ewAmvw if the
supremum exists and 0=0 otherwise. O is a stopping time with respect to
the o-algebras mmo, mmmo and can also be expressed as
o=sup{0<sss ‘m za}. Then by the optional stopping theorem and similar

o'’'s

arguments as for (2.4), it follows by (2.16)

mﬂwwm%ovﬁsoAmw zy,(s) for some O<sss }

= B Yo %0) (450}

(0,0)
- a AW VIAQ@A%O~MOV
{o>0} ¢
Y
-1 o 1
= a mAMI ~Mlv. .



3. From the method of images to the tangent approximation

For the method of images the first exit density of Brownian motion over
the boundary ewﬁnv according to Theorem 1.2 can be expressed as

E(8] (v, (t),t)) Ja®
3.1 p,le) = ¢
A a 2¢3/2 /'t
foo V2!
89 (——=2—)F (d6)
VIR BBy, (0) ht)) = s . Here
IrY; \m ) F(de)

the boundary function emaﬁv satisfies the implicit equation

by () e B=y_ (t)

7 0B = a7 [k a2 r ).
(o}

Since em is concave by Lemma 1.1, the subsequent inequality holds for
the first exit density

A tE) v, (£)

<

(3.2) p,(t) s IMMVM ¢ ( 7 )

with >manv = emAﬁvnwewAnv by the following argument. According

to the Bachelier-Levy formula, given in the introduction, the right

hand side of (3.2) is the first exit density at t of the Brownian motion
over the tangent to the curve em at t. Since the tangent VL) -(t-u)y'(t)
always lies above the curve emacv for ust, it is intuitively plausible
and easy to prove (see e€.g. Lorden (1973) and also the formulas (3.5)-
(3.7) below), that the first exit density at the tangent is bigger than
that at the curve at time t.

In this section we study the asymptotic behaviour of vanv when a > «
for boundaries ew with strong curvature. We shall show that for smooth
mixing measures F,
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>mAﬁu Gwaﬂv
(3.3) m.um:“v ulﬁleMeAl.\ﬂ,va‘_.fOA‘_vv

holds uniformly on intervals Ao\ngu when a-x,

This statement is studied from different perspectives, at first from

an analytic and further below from a probabilistic point of view.
Compared to statement (3.1} the tangent approximation (3.3) has the
advantage that it is easy to calculate. Its quality of approximation

for finite situations is discussed in the next section.

We show at first that >wAnv can be expressed as a ratio of certain mo-

ments. Here we drop the index "a" for a while.

Lemma 3.1:

CEGut),t)) | I8 Fy e, 99

(3.4)  2A(¢) = =
E(O] (W (t),t)) gmmeAﬁv.nAmmv

where the measure
8-y _(t)

a
X4 7
Heﬁmwmmhmwvmﬂaov

)F(d6)
(de)

[

Fuer e

m-émvaoemAav\ﬁ-Wm»\nvang.

"

Proof: Differentiation of the implicit equation (1.3) for U]

a = [ exp(88(t)-16% /) F(d6)

O— 8

with 8(t)=y(t)/t yields

0 = B'(t)] 8exp(88(t)-107/t)F(do) .
o
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d
+ 3gr | 87exp (9B (t)-56% /£)F(do)

O~— 38

where B'(t)=-A(t)/t?. But rewriting the last equation vields (3.4).

Qoo

Combining now the formulas (3.1) and (3.4) yields the representation of
the first exit density

"

(3.5) Alt) Y(t), Alt) )
plt) 372 E\m ) B(T) with

(3.6) Alt) _

By the Cauchy-Schwartz inequality

At .
(3.7) OAmA L1 which by (3.5) yields (3.2).
The ratio is exactly one if and only if F consists of a single point
mass, which means that em is a linear boundary.

The subsequent lemma describes the crucial facts which make the follow-
ing asymptotic considerations possible. Here emuwbmmnvo_zAnvwe (t) }.
a

Lemma 3.2: Let t,>0 be arbitrary. Then as a »

(3.8) wAHW < ﬁAw -+ 0 and
Y_(t) -
(3.9) inf a >,
o<tst, Yt

Proof: At first we give that of (3.8). By the definition of y_,
ewAniv > ® as a > o, 2

by Theorem 1.1. Since emAnAV > «, the first term converges to zero.

Since further for every x, m|4mAMW ’ WFV ~ 0 and since mIAmAmP ’ MIV
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mAmeﬁdv @ASAn_V wemAnAWv

v (e
5[ PAT <t [W (k) =x) P (W(t ) edx)

-0

ALY
=

)

1 X
ﬂﬂw eAﬂﬂﬂvmx

—_

1

WA
-

1 1 1 1

for all x < ewAn4v~ also the second integral converges to zero. This

yields (3.8).

To prove (3.9) we note that for oAnmn_

v, ()
e

1-¢( ) P(W(t) wemﬁnvv
S P(T_st)
a

<
< wa,wﬂ.n._v +0

as a > » by (3.8).

A similar result holds for the case when F is concentrated on (-«,x).

But then the boundaries can be closed.

To derive the tangent approximation we put the following conditions on

the mixing measure: F has a density f(6) with the properties

(1)

a) there exists a monotone increasing function duw~+¢hg\8~ and

certain positive constants K and Vo



©

[ (1T+Kv) 2h(Kv) ¢ (v)dv < =

A%
[e}

such that £(8(1+a))<f(8)h(a)
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for all az0.

b) The ratio £(o(1+e))/£(3) - 1 uniformly for all 6 as € »> 0.

2-6
(11) sup F(0,y) /{f(y)ey ) < =
OA<A8

for 0<§<1.

The conditions (I) and (II} for instance are fulfilled by monotone de-

creasing densities with exponential

like power functions. The following

tails or by densities which grow

example which has an integrable

singularity at 8=0 is also covered by the assumptions (see also Example

4 of Section 2}.

1/(6(log A\ovawomw
(o -

fle ) for 8re
n n

Here HommxuwomAHoa xw~mmumm etc.

According to Robbins-Siegmund (1970)

emﬁﬂ. = ﬁmﬁawommn

+ log Wm\\ﬂ+oA4~ 1/2

Theorem 3.1: Let nAvo be arbitrary.

the assumptions (I) and (II1). Then

2t v, (e

)
(3.10) mvm.:uv IIHWQNIGA ) (1+o (1

unt formly on Ao\nau as a » o,

Y32 Hoawﬁ-

1/8) ... (log, _, 1/6) (log_ 1/8)"

for 0<8se
n

the corresponding boundary satisfies

n
+ M Homwn 4+A4+@~H0©:+4ﬁ|4
k=4

as t ~ 0.

Assume that the prior F satisfie

))
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Proof: We show that for k=0,1,2

(t)

®|
(3.1 &% JEa) = VE (v, (£))E (v, (£)) (T+o (1)

uniformly on Ao\ng_ as a > .

Then the equations (3.6) and (3.11) imply that A(t)/B(t) ~ 1 uniformly
on (0, n ] as a » = which yields the tangent approximation by (3.5). The
proof Om (3.11) follows by a calculation using Laplace's method. For it

AAno.\NA 4 )¢ with n:m constant § of
by U_(E) (£)

satisfy C, (t) ~» o and ¢ Anvlﬂﬂﬂ|¢8 uniformly on

we introduce constants €4 (t)=2¢

assumption (II). The S

Ao\ﬁdu as a » < by Lemma 3.2. For wxo~a.m holds

© Y (t)
Rm eA \l

y£(8)de =

© 9-y_(t)
k 0 k a ae
Aemﬁﬁvw %AewAn,v eA \m wmhmv

e (t)

@ T faewFo (Fe— w (v, (6) (1ew)) au
[o)

It
<

a

where snA@uemﬂnvv\em

We split this integral up into three parts

= f o+ [ + [ =1+ II+ IIL.
u<-c, lulse, w>e,
K Ugte)
II = [ ) T l— \1 u) £ (p, (&) (1+u))du
lulze,
emﬂnu ) "
= e +
= Elw,(8)) ] ol u)dultrol

fulse,

v ()
. a
since ¢ - 0 and by assumption (I}. Introducing VE—p=— u yields further
a
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e
Floa (0D ey _<_m% $(viav(1+o(1))
-

(3.12) 11

mAemAnvvﬁmwﬂﬂ (1+o (1))
m

uniformly on Ao.né_ as a > =,

y_(t)
Here d_(t)=c_(t) IWM1I > ® as a > o,

The third term can be estimated as follows

> vy (t)
(3.13) I1I = H AA+CvWeAIWIII u) £ ( £) (1
’ Ve Yy (£) (1+u))du
a
@ b (t)
S £, ()] (1+wFh () ¢ (=— w)du
P vt
a
- -17 % k,, /E
£
(W (£))VE (v, (£)) % (1+ T v) sﬁemnnv V)¢ (v)av
a

an

£00, (N VEW ()] (1+kv) *h (k) 0 () av .

da

By assumption (I) it follows that

IIT = £, (£))VE(p, (€)oo (1)

uniformly on Ao\ﬁgu as a > «,

(3.14) 1% :-nmvew.ie.m-ewﬁi

) £1(6
2 TE )E£(0)de

c v (t)

$é(- W\m YF(0,u, (£))
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uewAnv ermewAnvverwemAnvwon\ewvav JE £ (£))
e /2t /2t mﬁewAnvw emAﬁv a
2-38
xemﬂnv mno\emAnwv JE

=ol)e Fo, (e G, Fale)

_ VE

= o(l) ﬂwﬂmﬂ m.emAnvv
by assumption (II).
(3.12), (3.13) and (3.14) together yield (3.11) and thus the theorem.

[s]n}n]

Combining the statements (3.1) and (3.11) yields the following result.

Corollary 3.1:

IRCIRINTS
mwAﬁv = MMMNM eAIﬂMIIVA4+oAAVW.

Comparing this statement with (3.10) shows that >mhﬁvnw emAnVAa+oAAVV\
which means that ewnnv is nearly parabolic. Thus boundaries which grow

like ﬁQ\ QAH are ruled out by the assumptions. In fact the measures F

2
of Example 5 of Section 2, which yield such boundaries, do not satisfy
assumption (I). Nevertheless those boundaries will be covered by the

following considerations.

The preceding analytic derivation does not offer much insight why the
tangent -approximation (3.10) holds. Therefore we give in the sequel an
intuitive heuristic argument which shows that statement (3.10) is quite
natural from the probabilistic point of view. Further below we shall

make this argument rigorous.

The heuristic argument is this: for the tangent-approximation (3.10) to
hold it is necessary that the mass of those paths of Brownian motion
which cross the curve Y much earlier than t but the tangent at first
at t, is small compared to that of paths which cross the curve at time

t for the first time.
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To make this statement more precise let us consider instead of Brownian
motion the Brownian Bridge with endpoints (0,0) and (y_(t),t). If for

a
every £>0 small

(3.15)  PAT_ S (T-e)t|W(t)=y (£)) = o(1)

as a -+ «, it is intuitively clear and we shall show this at the end of
this section that the tangent approximation will hold. But why holds

(3.15)? To answer this question let W
endpoints (0,0) and Aewﬂﬁv-nv. Then

5 denote the Brownian Bridge with

W (vt)
(3.16) oy o
p | -v| »o
o<ys1 Valt)

uniformly on Ao.nAu as a » .,

This can be seen as follows. Let SoA<nvnaoA<nva<ewanv. Then by the
scaling property of the Brownian Bridge

sup |W_(vt)/¥_(t) iy (ve) /&
v - =

o<vs1 © at)-vi = sue Iy ey

L SOA<V

) ommmﬂ_ﬁmmuqqm_ .

But this expression converges to zero uniformly on Ao\w__ as a » « by
(3.9) .

Thus statement (3.16) describes the fact that if the endpoint is high,

the Brownian Bridge takes nearly the shortest way between (0,0) and
t),t ich i g

aemﬁ ),t), which is along the ray T emAnv. If the boundary emAcv for

u<t is high relative to the ray m emAnv\ then one might expect that

i
I
i
|
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(3.15) holds.* Here height is measured in units of the standard devia-
tion of the Brownian Bridge 20. In fact under appropriate conditions on

F

; t u
W17 £ - + o
(3 ) OACMMNAtmn\GAnchAewﬁc T va(E)) holds .

We show this below. But (3.17) does not imply (3.15) because of the wild

fluctuations of the Brownian Bridge near t=0.
The following considerations make the preceding remarks precise and take
into account the behaviour of the Brownian Bridge near zero. For this we

put the following assumption on the prior F:

(III) It exists a x>0 and a constant M>0 with

3.18) lim inf F (M, () ,=) >x
A 3w O<tst, vy (e) e
8-y, (£)
o (—= }F (d8)
where memAﬁv.ﬁAm@, T T, ) :
[o(—7Z—)F (d8)

Assumption (III) for instance is fulfilled if F has a monotone decreasing

density and assumption (IT} holds.

The following consequence of assumption (III) is crucial for the subse-

qguent considerations: there exists a constant L>0 with

(3.19) remaﬁg < >9Aﬁv for all OAan4 .

e

*These considerations are obviously closely related to the large devi-
ation theory as it is described in Borovkov (1967) and vVaradhan (1966):
for quick pathes the functional %wﬂxﬁcvvnmc has to be small. This
functional also characterizes the set of limit points of the functional
law of the iterated logarithm due to Strassen (1964) . varadhan (1973)
showed that Strassen's result can be obtained from the general large
deviation theory for quick paths.
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This inequality follows from the next inequality by using (3.1) and v Here we also use that the distribution of the underlying Brownian
(3.2): * Bridge is given by

( i 1o (X)L o (WIELZX)

My_(t)< g 8F (de) £ A_(t) . i JE=u z
a Myl (r) Yalt).t a (3.22) P (W(u)€dx|W(t) =y (t))=dx YL YU /ET t-u
a 1 eA%Anvu
vE vE

We note that (3.19) is not satisfied if F has compact support on (0,«x}. ) £ n a
Then A, (t) stays bounded but y,(t) tends to infinity. = mx“mmmnmw o fgre=g) xgv (1))

Let oﬁnA be arbitrary. For nmao~ﬁ4u let s be defined by the solution

of the implicit equation mnﬁﬁduﬁllwmﬂﬂvav with OAQAW. Since by Lemma 3.2 Now we estimate the first term of (3.21). By concavity

v, M
inf ewA:vu\c¢8~ it holds s/t - 1 for a » « uniformly on Ao.ngu.
O<ust, \ u
| Y -gv©) ), ufg - eAﬁv-eAcvw ALY
, (3.23) =) = % £ v (t-u) =Tt
]
Theorem 3.2: Let the mixing measure F satisfy assumption (III}. Then

for u<t. This inequality and statement (3.19) yield the estimate

(3.20) mﬁemmm_zﬁnvnemAnvvnoﬁgv '
r [ A
. (3.24) mAﬁva Aeamv|menwvv 2 gm. va t=s

! t vis) S §
hgw Emll nAeAmVNV

untformly on Ao~n4u as a > .

[\

Since on the other hand mﬂewAw_zAnvuemnwvvnd by the law of the iterated
logarithm, the theorem states that almost all crossings happen just be-
fore t. Amvvéna

_ = Lt

Proof: We drop the index a. Theorem 1.1 yields

The right hand side converges to infinity uniformly on Ao~ﬂ4u as a » ®
by (3.9). Then (3.24) yields that the first term of (3.21) converges to

i zero. The second term of (3.21) we split up into two parts

(3.21) P(Tss|W(t)=y(t))=P(W(s)2y(s) |[W(t)=y(t))

o) : HXM;._.GAMV where xMAeﬁmv . We choose xmnme:& +mAm ‘mAMIMV with
(s ) -0 Xm

< =x)P (W edx |wW(t) =y (t))-
+|% P(TSs|W(s)=x)P (W (s)edx|wW(t)=y xmnnevmvvm. Then (3.24) yields

() _s ,
=1 e,\mﬂﬁ-m, (pls)=2p(t))) _ - £

b=
- = - |MA
(3.23) mAn:vaeAmv %g) mAnnmvneAmv gV (e)) Ky

vis) -1.,x 1 t [t s !
+|% a mAm~mv&mAnnmv eA<mAﬁ|wVAx|meAnvvvmx : : eﬁmvvg|mﬂgnh|AA\m

/3 v (s)

Vgtwmv




if i -
un ormly on (0,t;] as a ~ =, Since for x < y(s) a dmmm~wvmé\ the
integral

Y_(s) —
a -1z.x 1 t t s
7 e egg) ste=s) *YsrEmey (x-gv(v) N ax

X
8

can now be i ~ — -2 i
.mmnwamwm& by 1 ep\mwamv Axm neanvvv which converges to zero
by the choice of Xg. It is left to estimate

X
sl [ [
Ms a f£(5.35) ste-57 ¢! mAnumVAx|MGAnvvvax.

X
si x,1 s 1 e s x
nee £(5,5) € £l 5) for xsx_, it is sufficient to estimate f( M 1y,
s

’

a_ g2,y = 57! memﬂoxm\mnW®~\mvamov

=1 8
- a7 Jexp[ 2w is)x) [ exp (80 () /5-16 /5 P (a0)

/sy
where mmnﬁeamwv Vs with 0<y<1-28. The integral

a”! | s exp(-% eﬁvaAuwmu<v

859 28

since by (3.25) ml_ﬁeﬁmvuxmv 2 s and since

-1
a”' [exp(6y(s)/s-20% /s)F(d8) = 1 .

Therefore it converges to zero by {(3.9}. To estimate the other part
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It it is sufficient to show that

a”l e mxvﬁoeAmv\m|W®m\mvaa®v = o(1).

Since sup

F(0,68_ ) » 0 by the definition of 6_ and since
0<sst s s

1

exp (8y(s)/s)F(d6) mAO\@wV

<

wxvgoeamv\mvvmx@A|W®~\mvaQov H mxmA|Wo~\mvaQ®v
0

s S

@ O @

w©

it follows from the equation mn%mwaoeAmv\m|W®m\mvava that
o

@

a = [ exp(By(s)/s-30%/s)F(d8) (1+0 (1)) .

6
s

This implies the desired estimate and completes the proof.
oog

In the sequel we study the derivation of the tangent approximation from
Theorem 3.2. To explain this we need several integral equations, which

we also will use in the next section and which we introduce first.

Let ¥ be a smooth boundary such that the density p of the first exit
distribution of Brownian motion over y exists. (According to Strassen
(1967) a continuous differentiable boundary has a continuous first exit
density if it is an upper class function at zero.) Let T denote the
corresponding first exit time. Then by the law of the iterated logarithm

it follows that
(3.26)  p(T<t|W(t)=p(t)) = 1 .

We can write this equation more explicitly by using the first exit

density of the Brownian Bridge, which by formula (3.22) and the strong
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Markov property of the Brownian motion is given by

1
(e - eAcvv ﬁ 1 eﬁegnvvgué .

pfu) e ¢ e =

Thus (3.26) can be expressed as
1 eﬁnvleﬂcv
t =
1= fpla) S v
piwl = eA«,
(o] 7 ¢ (F—=- 7T )

du ,

which is equivalent to the following integral equation (c.f. Fortet
(1943) and Durbin (1971)):

t
3.27 o(blel) - (t)-
( ) \m /E % vsz\MHﬂ ¢ \WH%ACVVQS .

The next integral equation, which we derive, is due to Durbin (1985)

and Ferebee (1982). For it we assume iti
. additionally that ¢ is co
A8 = (€) 50" (£) ncave. Let

eﬁwvv- yUle) =ulu) = (e-w) ¥ (t) o ¥ (t) =y (u)

(3.28) pir)=Alt)
e (t-u) 372 ey du

%vAz

Thi . : A X
his equation has an intuitive geometrical meaning for concave bound
ries. Let e

S = inf{u>0[W(u)zy(t)-(t-uly’(t)}

denote the first exit time of Brownian motion over the tangent to th
. e
curve ¥ at t. By concavity holds y(t)-(t-u)y'(t) 2 ¥ (u)

for all ust and
p i = = u
therefore for a aths with <t hold T<S. T 3
. I s he Bachelier H.m<< formi a

(3.29) P(sedt) = »www eA%umlvmn

|
|
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and together with the strong Markov property

t
(3.30) P(T<s, S€dt) = [P(T&du, S€dt)
[e]

t . — 1 - o
fau ) LB (EnVTED o B g

o (t-u)

n

substituting the equations (3.29) and (3.30) into (3.28) shows that

equation (3.28) can be expressed as

(3.31) P(Tedt) = p(S€dt) -P(S€dt,T<S)

which is obviously true.

By combining the equations (3.27) and (3.28) we can derive further

integral equations for concave functions, for instance the one with

which we shall show the tangent approximation:

t ¥ (u) =29 (£)
- t Y () -y (u)
(3.32) pl(t) %wﬁsv Aa-cvw\w o= )du .

This equation can be derived as follows. It is obvious that (3.28) can

be written as

At
(3.33) plt)= uhww b

e:& e:&e?: e:.;l@?:
(== ¢ ( VvAcvmc
% (e-w) /2 /e-u

cve) L e EtE p s

o (t-u)

An application of the equation (3.27) on the last term of (3.33) yields

p(t)
3.34 =
( ) plt) 377 o=

eFJL yie)-vlu) ﬁe?vufc:ﬁimc.

& (e-wy/? /Eru
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A further application of the equation (3.27) on the first term of (3.34)
leads to (3.32).

The equation (3.34) is interesting by itself. For a monotone increasing
function ¢ it has an intuitive probabilistic meaning, which can be ex-

pressed by

(3.35) P(Te€dt) = P(U€dt)~P (UEdt,T<U)

where U = inf{u>0|W(u) 2 y(t)} .

For monotone increasing functions one derives (3.28) and (3.32) by
combining the equations (3.27) and (3.34).

We note that the probabilistic meaning of (3.34) for concave decreasing
functions is unclear; the same can be said for the equation (3.28) with
convex increasing functions. Nevertheless Ferebee (1982) has shown with
analytical methods that (3.28) holds without any order restrictions on
¥, which implies the same for the equations (3.32) and (3.34). But his
arguments offer no simple probabilistic interpretation of the equations.

We now come back to the derivation of the tangent approximation. Because
of the inequality

>mAnv emAﬁvV

(3.2) vmﬂwv < IMMNM o 7 ,

we have only to show the converse inequality as a - «. In the sequel we
omit the subindex a. By Theorem 3.2 we have for s given by the solution
of the implicit equation mnﬁAAIAQAMﬂﬂvmv with OAaAW

(3.36) 1+0(1) S P(s<T<t|W(t)=y(t))

1 Y(t)-¢fu)
t
- fow RS AT )
] 1, )
BT Ve
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U,
PR ) as)
- Tt

Since by (3.23) e = we get from (3.36
.37 Asb o (28 (o) <o b gy () NPTCSETTTIIN
. < u
nu 2 vE s :....Cvu\w vt-u
t p)-Sult)
t v t) -9 (u)
MwmAcv A\n..cvu\m ¢ (== )du

Here we use the concavity of ¥, which implies eﬁcuanAnvvo for O<u<t

and equation (3.32). This finally yields

A, (8) v ()
(3.38) IMMQM eAlﬂﬂIIVA4+OAAVV Mvwaﬁv

uniformly on Ao~ﬁA_ as a > «.

Under a condition similar to (I) and under (III)

(3.39)  [A (s)/h (E) ~ 1] >0

uniformly on Ao~ngu as a *+ «, Then (3.38) together with (3.2) yield the

tangent approximation. We omit the details.

In the next section we study the tangent approximation in general using
several of the ideas presented in this section. There we shall put
assumptions on ¥ which are gquite similar to the ones which turned out
here as necessary conditions for the method of images. Unfortunately

the results of the next section are somewhat too weak to cover the
tangent approximation for the method of images in general. We shall come

back to this point in a remark which follows Theorem 4.1.



4. The tangent approximation

In this section we study the tangent approximation in general and derive
it for a broad class of boundaries. It will be shown that the tangent
approximation holds uniformly over intervals if the boundaries recede to
infinity. Therefore by integrating out the densities, approximations for
the first exit probabilities can be derived. The sets on which the
tangent approximation holds can be finite intervals or the whole real
line. This depends on the fact, whether the boundaries belong to the
upper or lower class at infinity. All the results about the tangent
approximation hold uniformly over all drift directions. A refinement of
the tangent approximation, a second order approximation due to Jennen is
also given and the quality of the approximation is discussed for some
examples.

Let ﬁem»wmﬁ~+w denote a set of positive, monotone increasing, continu-
ously differentiable functions on u~+qu.8v. (The assumption of mono-
tonicity is just for simplicity, it can be removed). The first exit time

of standard Brownian motion W(t) over em is defined by

(4.1) T, = inf{t>0|W(t) 2y, ()} .

According to Strassen (1967) the meﬁnpvcwpo: of the stopping time a

has a continuous density p, on (0,2) for each a provided that by is m:
upper-class function at zero. Let > (t)= e Amvvne.awv denote ﬁ:m inter-
cept of the tangent at t to the ocw<m e on the space-axis. The following
theorem is very similar to Theorem 1 of Jennen-Lerche (1981). A proof

of it is given at the end of this section.

Theorem 4.1: Let OAnAaB and O<a<1. Assume that

(1) HVAHwAH_V -0 as a -+ »,

(I1) emAmv\nQ is monotone decreasing in t for each a,

(III) for every €>0 there exists a 6>0 such that for all a

fogtsh/uiter=1l<e if |s/t-1]<s
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for s,t€(0,t,).
Then

alt) e (t)

(4.2) vanv = w\w ¢ (——=) (1+0 (1)}

uniformly on Ao‘ngv as a > =,
Integration yields the following corollary.

Corollary 4.1:

t > (u) e (u

)
P(Tyt)= | .xIQ| 2 —)au(1+o (1))

uniformly on Ao~¢gv as a > o,

We add several remarks to the theorem. At first we note that the tangent

approximation is a purely local approximation. The quantity
A (e) v, Anv

$
wmm /T

Huvmmw.

is usually not a probability density (except for straight

The assumptions of the theorem are a little bit too strong to cover the
method of images in general as described in the last section. Essentially

assumption (II) is too strong.

Assumption (I) can easily be checked by using the inequality

4 Aﬁv Aﬁv
@AﬁmAﬂ H IIIQI eA dt

which holds for monotone functions em
The case n; = » is included. Example (i) (below) is of this type. The

other examples satisfy the conditions of Theorem 4.1 on finite inter-

vals: .
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(4.3) (i) vy (8) = V{E+FT) (Za+log (E+1)7,
(1) y (t) = at®, o<l ,
(iii) ¢ _(t) = /2(r+at), r>0,
(iv) ¥, (t) = Vay(t/a), ¥ a fixed function.

a

The last example msmzm that Strassen's result on the tangent approxima-
tion (Theorem 3.5 of Strassen (1967)) is contained as a specilal case of
Theorem 4.1.

The guestion arises: for which functions is statement (4.2) true on

R _? In answering this one has to distinguish between upper and lower
class functions at infinity (¢ is an upper or lower class function of
the standard Brownian motion W({t) at infinity according as P(W(t)<y(t)
for t large)=1 or 0). For upper class functions the answer to our ques-
tion is affirmative, for lower class functions it is negative. The case
of upper class functions is covered by Theorem 4.1. A typical example is
given by (4.3)(i). To illustrate what happens in the case of lower class
functions let us consider the boundary of example (iii), emﬁnvu\MﬂNmmu.
For it by Corollary 4.1 holds

1 -
T/t At 101y,

_ -a 1
(4.4) wA‘H_Aﬂ._v = \mm 37 £

O ~—rr

The integral on the right hand side tends to infinity as ty » <. Thus
the tangent approximation cannot be true on the whole axis., In fact for
this boundary the assumptions (II) and (III) of Theorem 4.1 hold on R

+
but not (I) since mAemA8vn4 for all a>0.

Nevertheless the intervals on which (4.2) holds uniformly, can grow with
a. Therefore it is natural to ask: for which functions mr&:m with

lim :m = «, does statement (4.2) hold on Hmqu\:mvm

arw

To answer this question, we rescale the problem to the interwval (0,1)

by using the space~-time transformation

(4.5) s = n\wm , Yy = x\\mm.

|
|
i
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We also introduce the new assumption

(") mAHmAsmv >0 as a-w.

If the assumptions (I'}) and (II) and (III) hold on R for the origiral
functions ewAnw\ then they are fulfilled for their transforms
gmﬁmvnemAdmmv\\Mm on (0,%). Also the guotient of the density and its
approximation remains invariant under the transformation. That is, if

f_(s) denotes the density of the first exit distribution over Ny then
a

e -t b (e
p Aavﬁ g (-2 v%
a t Ve
n(t)-tnl(e)  n_(6)
= £ Aﬁvﬁ Y e T B V% '
a + —\m

since £ Amvn:wvanv. Therefore the tangent approximation (4.2), which
a

holds for na by Theorem 4.1, carries over to the tangent approximation

for em on Ao.rmv. This yields the following result.

Theorem 4.2: Let h be a function with lim h =< and let the assumptions
aroe

(II) and (III) be fulfilled on R . Furthermore assume

(1) P(T, < :mv -0 as a > o,
>mAnv emgﬁv m
= —=) (1+o(
Then @mAﬁv IMMQM o e ) (
untformly on Hmnao\vwv as a > o,
The converse of Theorem 4.2 is also true: in the next section under

further assumptions we shall show that (I') is necessary for the tangent
approximation to hold on Hm (see Theorem 5.5).

Example 1: y_(t) = v2(r+at) for t>0.
For the first exit density holds .
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Va o~ la+tr/t)

(1+0(1))
a 2/t

according to Theorem 4.1. From Corollary 4.1 we get
4.6) t1 s
(4. P(T <ty) = w

t
= /3 e S 1 eTE/t A 51y
[o]

_rx?

™ S

- -a 1 2 dx
= Ya e 7 o e - (1+o (1)) .
1

This is the one-sided version of Siegmund's result discussed in Example
6 of Section 2. According to Theorem 4.2 statement (4.6) remains true

if we replace the constant t, by a function sm for which the right hand
side of (4.6) tends to zero. This follows since the functions em are
concave and therefore the tangent approximation dominates the first exit
QmMmHnw which implies (I'). For h, we can take 5mn meAmmwav with

QVM.

Example 2: emnAnv = #/t(log MNV for OAnmnA (two-sided boundary). This

is one of the few examples for which the exact density is known (cf.
Example 4 of Section 1). For the upper branch e+ it is equal to

v, (£) v, (t)
p,(t) = MMM%M eﬁlﬂﬂ!lv

{(here we omit the index a).

The approximation (4.2) is given by -

v, (t) ] v

A (t)
+ Yo (
26372 22y (4 /e

+

+

(4.7)  p,(t) = ) (1+o0 (1)) .

It obviously overestimates the true density. For a better approximation
see Example 2s following Theorem 4.4. The quality of these approximations
is discussed at the end of the section.

!
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Example 3: ewAnvuwﬁa for t 2 0 with Qmw.
The first exit density is equal to

3
_1=a %72 1-20
p,(t) = 75 at exp(-a?/2t ) (1+0 (1)) .
For the distribution function holds
i mAanvﬁ ~ Qnd\mg
mAemAﬁgv = NTra 1 eﬁmﬁi 3 (1+o0 (1)),

Theorem 4.2 holds with smuwm. B<2/(1-20). For a>1/2 one cannot stop

immediately at zero. Nevertheless similar results are true (cf. Jennen-

Lerche (1981)).

Example 4: emAnvuAAn+AvAwm+womAn+4vva\m for t20.
(See also Example 3 of Section 2.)
P(T<h t,) = e ®(1-0((2a+log(h,t,+1)) /ht) /%)) (140 (1)).

For :mnm we have

P(T <at)) = & 2 (1-0(Y27E])) (1+o (1))

which coincides with equation (35) of Lai-Siegmund (1977). Furthermore
(4.7) yields P(T_<®)=ge 2 (1+0(1)).

A simple but important relation makes it possible to extend the previous
results to the case of Brownian motion with drift. The approximation
(4.2) of Theorem 4.1 states that the ratio of the density to its approx-
imation tends to one. A multiplication of the density and its approx-
imation by the same factor does not change the ratio. To obtain the
first exit density and its approximation in the case of Brownian motion
with drift, one has to multiply the corresponding quantities of drift-
less Brownian motion by the Radon-Nikodym derivative. Let Pg,a denote
the density of the distribution of T, where
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T, = inf {£>0|W(t) 2 v ()]

with W(t) the Brownian motion with drift 6. Then by (1.14)

A
wo\maﬁv = mx@AmewA¢v|Mo~nvmmAﬂv.

We get for the ratio of the density to the approximation the following
expression, where the right hand side does not depend on 6.

ol (-(p_(t)-et)2/2) |7
vo~m nw\m P a

Ay te) 2 -1
- mmAﬁvﬁmmwmu exp(-u, (027200 |7

This leads to the following result.
Theorem 4.3: Let the conditions (L'}, (II) and (III) on R, hold. Then

, A(e) oy (v)-8t
Py aft) = 372 o (—

) (1+o (1))

untformly on Ao~rmv and uniformly for all BEIR as a»w.

This result makes possible uniform approximations of the operating
characteristics of sequential tests.

It is possible to refine the tangent approximation by higher order
terms. Ferebee (1983) and Jennen (1985) derived those. The subsequent
result, which is a bit stronger than Theorem 1 of Jennen (1985), gives
a second-order approximation which holds uniformly on intervals. We

need the following assumptions:
'
(") P(T ,<h ) » 0 as a » =,

(IT') there exists a constant 0<a<l, such that emaﬂv\np is monotone
decreasing on R, for each a,

———
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(II1°) vy,
every €>0 there exists a §>0 such that for all a holds, if
s, t€I, with |s/t=1]<68 then fewamv\emﬁnv-A*Am and
lwp(s)/ug(e)=1]<e,

is twice continuously differentiable on kuAo\vm, and for

(IV') there exist constants p<! and B<w such that
"ﬂw\memAﬂu_Awﬁemawu\\mvd+o for all t€I_  and all a.

Theorem 4.4: Assume the conditions (1')-(IV'). Then

vee) e
(4.8)  p(6) =[A ()¢ s (1+0(1)) =1, (£)R(T,<t) (1+0(1))

24 (t)

a
-3/2, Ya!t)
+ OAww:nvvﬁﬁ QAJNW-'V

holds uniformly on Ao\vmv as a » «», The remainder satisfies
wmAﬂvumx@An.emAnv\\mvxv for some «>0.

Concerning the proof see the remarks at the end of the section. This
second order approximation consists of two correction terms, one local
and one global. While the local term takes the curvature of by near t
into account, the global term takes care of paths which cross early and
then at t again. In the next section we shall discuss the appearance of
such a term more thoroughly. Integration of (4.8) yields a result quite
similar to Corollary 4.1. From this and Theorem 4.4 the following
examples are obtained (cf. Jennen (1985)).

Example 1s: emﬂﬁvu\NAn+mnw‘ r>0, for t>0.
Z -r m\m
mAaAnvneA\mmvﬁﬁxmm-A\\wmAA+oAdvvv m e TR Mlay/x
t

. Au\\mmvm-n\ﬁﬁﬂ+oﬁ_,;

uniformly for all tstsexpl(a Fe®) with p>3/2 {cf. equation (30) of
Siegmund (1977)). M
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mmwmmwmlwm" ewvan\ﬁ log W . Here we consider the one-sided case of
the preceding Example 2. On Ao~ndv holds

(4.9)  P(T,5t) = b ﬁewAnv+n\ewAnvﬂd+oAAva and

e 1ee?/y_(0)?
Py () = Tm?v\? 2h, (8) T- 1re/y_ (02 _
a

1 e b0
oty @] 2.

Finally we discuss the gquality of the approximations in the case of
Example 2 (two-sided case) for which the first exit density is exactly
known. We compare the exact density for the upper branch

b, (2) by ()
Py lt) = 373 eAlﬂﬂl!-

with the tangent approximation P, given by (4.7) and with the second-
order approximation P, given by (4.9). The global term is left out since
it is exponentially small. Let

p; (t}-plt)
%R, T Rm

Then the following table shows the gquality of the approximations:

a 2 5 10 20
r, 0.5 0.2 0.1 0.05
r, 0.222 0.055 0.017 0.005 .

We recognize that the second order term improves the approximation con-
siderably. In this example presumably the effect of double crossing
makes worse the quality of the approximation. The results of Jennen
(1985) for a one~sided example seem to be better although we have to

- e
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be careful with comparisons. Jennen calculates the true density by
solving the integral equation (3.28) numerically which also leads to
small errors.
The approximations of the probabilities mAewAAv. given by the formula

(4.9), are contained in the following table

a 2 5 10 20 100

mﬁemAAv 0.404 0.188 0.104 0.057 0.013 .

Proof of Theorem 4.1: The following proof combines the ideas of Section

3 with a construction of the proof of Theorem 3.5 of Strassen (1967).
This leads to a relative simple proof of the result, which can be used
to give a higher order approximation. We begin with a lemma.

Lemma 4.1: Assumption (I) <mplies

v, £)
(4.10) inf —_—= *®
OAnMng e

as a > «,

The proof is the same as that of statement (3.9) of Lemma 3.2.

From now on we skip the index a. Let ¢>0 be chosen such that a+e<1.

Let munAAxAﬂdeﬂvmu. Let B and y be chosen such that

(4.11) q+e<2B-1<y<B<T .
Let r(s) be the solution of the equation

(4.12) Y81 (&)Y o g,
s s

From statement (4.10) and the definitions of B and y it follows:

(4.13) xr/s - 0 uniformly on Huﬂo\ﬁdu as a +» o,
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+ 0 uniformly on I as a » =,

yis)? (¢
(4.14) p (5

2 -
(4.15) %%WPI Amvmm L uniformly on I as a + «,

Let ©Ax~nv

motion which starts at (x,r) with x<y(r). Then by conditioning we get

(t) denote the first exit density over y of the Brownian

Y(r)
(4.16) p(t) = | p(T>r,winiedx)p X ().

-0

We estimate this equation with the help of the subsequent lemmas.

Lemma 4.8: Let k(r)s= eava m. Then

(4.17) mAx~HuAemm_zAnvuehﬁvvqudv

uniformly for all ﬁon~¢4v and all xsk(r).

Proof: Let y(s) be chosen such that y(s)<y(s). Then

(4.18) p (XX (pegw(t) =y (t))

= p 0T (w(syzy(s) [WiE) =y (L))

+ 2T (rgs wis) ey s) [WiE)=p(e)) -

t-r
-0y (e= mvﬂ<

(s)- X eAnvn |1M x))

Yis) (v 1)
e (TSs|W(s)=y) P (W(s)€dy|W(t) =y (t))

+

= I+II.

¢
H
1
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Let §>0 be selected such that 0<1-6-e. We choose mAmvnMGva+x@‘mbmﬂmP

-Aeﬁmv 1-8-¢

with K lel . Then y(s)<y(s). To see this we note first that by

the BO:Oﬁosonnw of ¢ and by assumption (II)
(4.19) D)% e sy(s) sy (e).

Then by (4.19) for sufficiently large a holds

_ s . [slt-s)
(4.20) wy(s)-y(s) = y(s) neAnv xm —

2 eﬁmvﬁ (=17 - mmmﬁeﬂmvv&Aé+oAg.v%
2 u(s) 2 ES
- 152 () (g &
Then by r=of(t)
@.21) \eerresy v () - B wie) - 22 x,W_xm- == x_ (1+0(1))
- ﬁA&wmwv . emuu _ (140 (1))
= EEH 1 o) - -
since mw = @wmwkn,m + 0. This implies I » O.

Let g be the linear function with g(s)=y¢(s) and g(r)= eAmVAHVQ. Then
gsy on [r,s] since rﬁcvnﬁzvgeamv is a concave minorant of y on (r,s)

with g{r)=h(r) and aAmvstmv. N
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Let T=inf{u>r|W(u)2g(u)}. Then by Example 1 of Section 1 for y<y(s)
and x<k

mﬂx‘mv

(4.22) P (pgglw(s) =y) < (Tss|W(s)=y)

exp (- 2491 (g (r)-x))

A

exp (-3 (¥(s)-y (1) (u(s) (5) %K)

Since a<B and r/s -+ 0 we get for sufficiently large a

roo_, _ [(rya_,r,8],1 r,a
(.23 wis) %k = v | BB e .

Since 0<2B-1-¢ and y<1 we get for large a

wmml‘_

(5%

nin

($)€ ana (§) %= (LELT)E/vy (WUB)® (5 20, e /y

pt)?, e
2( T )} .

This together with (4.23) leads to
4.2 Lo ] r)28-1 y(t)¥ e
(4.24) y(s) (3) %k 2 5u(s) (2)°F7 ()"
Combining (4.20), (4.22) and (4.24) yields

(4.25) »XT) (25 u(s) =y) g exp(- 152 WLELT (&) 2871,

From (4.25) and (4.18) by (4.15), II -+ 0. This proves the lemma.

ooo
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Lemma 4.3: For all xsk({r) holds uniformly

(4.26) @AX\HV (t) = >:..VA._+O“MVWVIX eﬁé:nlev )
{t-r}) T-T
Proof: Let xsk(r). Since ¥ 1s monotone increasing, by equation (3.24)

holds

(4.27) wa~HVAwV - eAnvuw\w eAeAnv-xv
(t~r) ve-r

t
G NS TIS R TET RN R T R

r Antcvw\w t-u .

We split the second integral up into two parts:

t
(x,x) y(t)-p(u) ye)-v(u)
p T (u) o )du
W (t-u) 372 V=l
1 g Elzul)) gy
Aﬁlsv \ﬂlc

t (x,r)
= P (e) (1ro (1)) p " (w)
S

by assumption (III).

Then by (3.27) and by Lemma 4.2

(4.28) 1 = L8 (1o (1)) o (ELTX) p (XoT) (crce jw (k) =y (£))
-X

/t-r /t-r

JvE) ) -x
T o (=) (eo (1))

To estimate the first term we note that by assumption (II)
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CvQ.

.29 wler-v (v TR we

t-u - t t
1 fnv

Thus by (4.29) and Lemma 4.2

s
{x,r) yt) =y (u) P(t)-v(u)
(4.30) 1 = |p (u) X1 }du
m (t-u)>/2 VE=T

SIELEE o DXy 008 (renss we) =y o))

n

pit)/t eAfnTx
\ﬁlH \

Jo(1).

Since r/t - 0 (4.27), (4.28) and (4.30) yield

:rﬁ-iz:a::-x-e.:::o:: (e)ox
P (e = ﬁ o) 372 VE=E _ o )

from which the lemma follows, since by assumption (II),
Pr{t) < ayp(t)/t.

ooa
Now we show
(4.31) plt) = »hww eAHVVAA+oA_,v )

Since wMeAmwAMVQMeAWU we get from (4.16) and Lemma 4.3

K
(4.32) plt)z [P(Tor,w(r)eax)p * T (¢)

-k
k
Ade) (1+o (1)) -k . w(t)+k
2 [P(T>r,W(r)edx) o ).
-k (t-r) 372 /E-x
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By assumption (II} and the definition of k, k=o(A(t)). By (4.13) and
(4.14)

(4.33) o (lELtky o oLt

i e ) (1+o (1)) .

This together with (4.32) yields
(4.34) pl(t) 2 P(T>r, |W(r)|sk) Eww iﬁﬁlv (1+0(1) ).

But P(T>r, |W(r)|sk) - 1 by assumption (I) and since

2
k2/c = WL (52671 5 o by (4.15). Thus (4.34) yields
(4.35) ple)2 E.ww 1:::8::.

To show (4.31) by equation (4.16) it is only left to show that

-k
(4.36) [ p(r2r,wir)eax)p ¥ T (¢)

(x,r) _ o (ALE) eAS
+ [ P(T>r,W(r)€dx)p (t) -oTl\l A M)
k

For the first term this is easy to see by Lemma 4.3 and since k//T - .
The estimate for the second term can be done as follows

y(r)
[ p(Tor,W(r edx)p X (¢)
k

y(r)
yit)~ ylt)-x
s [ p(w(r)edx) X
k Aﬁ-n,u\w VEE

)

by the monotonicity of y,
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vir)
Vi) -k, Wlt) t x
oz YR ==) (140 (1)) M FeoeT o aAﬁ Treos) ey (8)))ax

ple) |, it ﬁ _ gsxﬂwn. x
() 4 8L8) (1o (1) [1-0 ([ iy kfuon) ]

= (1) »“ww o (

A

A

e:nfo:v

by assumption (II) since (1-a)y(t) € A(t) and since

k r,1-8 k
- = e - = —={1 1 B
\l (k e:..: \|: (£) (1+o0(1))) \mA +0 (1))
2 uis)? x 281
where k“/r = llM!I.mw +o by (4.15), This yields (4.36) which completes
the proof.

For the proof of a result which is a little bit weaker than Theorem 4.4
see Jennen (1985). She additionally assumes that eAﬁv\nm is monotone
increasing for some BR>0. This assumption rules out the preceding
example (1s). It can be deleted by combining the arguments of Jennen
with those of the preceding proof. Then one has to define the number
s(t) a bit different to get a smaller interval (s,t). This is needed
for Jennen's argument. But this demands a more tricky argument in Lemma
4.2. The details will be given elsewhere.

5. Beyond the tangent approximation and back to the Kolmogorov-

Petrovski-Erdds test

Let ¥{t) denote an increasing and continuously differentiable function.
Let T=inf{t>0|W(t)2V(t)} denote the first exit time of the standard
Brownian motion W(t) over ¥ (t) with T=» if the infimum is taken over the
empty set. Let P(T>0)=1 and let p{t) denote the density of the distribu-
tion of T. For boundaries Yy which grow faster than /T as t tends to
infinity like V2t log log t, we study the asymptotic behaviour of plt)
and of the tail probabilities P(T>t). From our results the Kolmogorov-
Petrovski-Erdds test near infinity will be derived. Finally we discuss
uniform approximations of the first exit densities on the whole real
line. Let A(t)=y(t)-ty'(t) denote the intercept on the space-axis of the
tangent at t to the curve ¥y and let eawvuumﬂ mnww\m denote the standard
normal density.

Theorem §.1: Let P(T>t)>0 for all t>0. Assume further

(1) iﬁ\\m > ® gg t > @,

(II) there extist a constant WAQAA such that for -all nwn0vo. eAﬁv\nQ

is monotone decreasing,

(III) for every €>0 there exists a §>0 and a t,>0 such that |s/t-1}<$

implies _% MMW -1|<e 4f ﬁwng.
Then
At) eAnV
(5.1) (t) = P(T>t) ¢ (====) (1+o (1)) s t o >,
p 372 a

Before we give the proof of the result we discuss several aspects and
consequences of it. The special case, P(T<®) <1, is already treated in
Jennen-Lerche (1982).

The asymptotic density consists of two factors, one local and one global.
The local factor is the tangent approximation. An intuitive way to inter-
pretate the global factor is this: one can think of the pathes to be
killed when they hit the boundary y. Then the theorem states that the
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hazard or mortality rate p(t)/P(T>t) is asymptotically equal to the
tangent approximation. This aspect is essential for the subsequent

calculation of the tails of first exit time distributions for lower

class functions. For those P{T<x)=1 holds. Since %W log mAevcvuumW%wwv,
we get

t
(5.2) P(T>t) = exp(-] p(u)/P(T>u)du) .

o

Since P(T>t) -+ 0 as t-», the integral vaﬁcv\mnevcvmc + o, Thus the
combination of (5.1) and (5.2} yields the following corollary.

Corollary 6.1: Let V(t) /YT be decreasing on an interval (0,e) and
assume (I1)-(III) and P(T<=)=1. Then

o (L) qq (10 (1)) .

t
(5.3) P(T>t) = exp(-J
o

The additional condition together with the monotonicity of ¢ guarantees

that %m &%WP eneﬁcvvas is finite and thus also ﬁm wMWP 9 ( Acvvoc. This

follows mHoB the xowaomono<|mmnno<mwpnmn90m test Aom. Ito-McKean, p. 33)
since P(T>0)=1. One can remove the additional condition of the corollary
by just taking a small initial part out. For every ﬁgvo holds

t A eAsv
(5.4)  p(T>t) = Eavf,mxﬁ-h .I\l i Ez:s.::

) oA
‘ mxnaum |mum9A

1 u

¥ (u)
/e )du(1+o(1))),

since the exponent tends to infinity as t -

There are some related results in the literature, although they are
less precise. Bass-Cranston (1983) give upper and lower bounds for

P(T>t), but do not get the precise asymptotic order of the exponent.
Uchiyama (1980, p. 95) states an upper bound which for the boundary

(2(1-e)t log log nvA\m\ €>0, gives the right exponent up to a constant,

while for boundaries like (2t log log nvA\N gives a too large rate. Here

are the exact rates for them.
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1/2
Example 1: y(t)=(2(1~e)t log log t} , €>0, for large t.
P(T>t) = exp(- 1-¢ (log log nwi\mﬁwoo £) & (1+0 (1))
2V/me
as t » o,

1/2

Example 2: y(t)=(2t log log t) for large t.

exp (- IHIAHom log ﬁvm\w

3/

P(T>t)

(1+o (1))

as t » o,

Theorem 5.1 leads also to a characterization of the upper and lower
class functions at infinity, a special version of the Kolmogorov-
Petrovski-Erdds test. For the general form see Theorem 5.4 below.

Corollary 5.2: Let P(T>t)>0 for all t>0 and let the assumptions (I)-
(II1) hold. Then P(T<x)<1 if and only <f

vit) eA%WMPvmwA o0 for some O<t, <= .

8
ﬁi
(™
(&

Proof: Since by assumption (II) and the monotonicity of
(1-a) y(t)sA(t)sy(t) holds, the finiteness of the integral

f Mn m%mwvmn is equivalent to that of | >Anv o ( %%MPvmﬁ.
ﬁ

t d; ﬁ

Let P(T<»)=1, Then the equation (5.4) implies

Conversely if P(T<w)<1, then lim P(T>t)=P(T==)>0. Thus by equation (5.1)
as t' > te .
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-

P(t'<T<=)=[ p(t)dt
ﬁ.

umAeusv.A+oAgva bhmw eAeAnv,mn

ALE) o le)) g
IIVM Iﬂﬂ1vmﬁA .

which implies that

8

The statement of Corollary 5.2 is unusual in the sense that it charac-
terizes upper and lower class functions at infinity by first exit times,
while the usual definition and characterizations (cf. Ito-McKean (p. 33
and p. 163) and Strassen (1967)) use last entrance times. We shall show
in the proof of Theorem 5.4 that the well-known result can be derived
from Corollary 5.2 under somewhat stronger conditions.

We contrast Theorem 5.1 with a result of Novikov (1981) about first exit
distributions over boundaries which grow slower than parabolas, i.e.
eﬁﬁvqu\mv as t » =, For those the tangent approximation no longer holds
and an other phenomenon occurs. The tail probabilities are those of
horizontal boundaries which are adjusted to the right level. For a proof
see Novikov (1981)}. The following result is stated for densities.

Theorem 5.2: Let y(t) be monotone increasing and concave. Then the

integral

elWl dt < o 4f and only Zf EY(T)<> and

t— 8

plt) = nmwm (1+0(1)) as t-o wphere ¢ = EY(T).

We note that here, since eﬁﬁv\\M¢o the mmowow eA&WMPV. which plays
such a crucial role for the high boundaries, drops out.

We also note that Uchiyama (1980) has obtained upper and lower bounds
for the tail probabilities of the order nng\w. From Uchiyama's result
the asymptotic density can be derived by using the integral equation

(3.32). We omit the details.
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For the proof of Theorem 5.1 we need the following two lemmas. The
first one is quite intuitive. For a proof see for instance Uchiyama
(1980) .

Lemma §.1: Let ¥y and vy denote continuous upper class functions at zero
with ¥, S ¥y on (0,7]. Let eHuHsmﬁnvo_zAﬁvweHAnvy. Then for z<y (1),
>0 holds

(5.5) mAzAavmu_emvav SP(W(T)sz|{T, > 1)

With the help of this lemma the following inequality for the hazard
functions can be proved. It is due to Cuzick (1981a).

Lemma 5.2: Let v, and vy denote continuous functions which are upper
class at zero and which are continuous differentiable in a vicinity of
t. Let Yy < Y, on (0,t) and e_AnvuemAnv. Then

P, (8] pyE)
(5-6)  B(r,sE

P(T>t)

Proof: We only sketch it. The densities 1 i=1,2 exist by Lemma 3.3 of
Strassen (1967).

p,(t)dt
B(T,58) P(T €(t,t+dt) [T, >¢)

1 e) (y,t)
= [ P@W(t)edy|T,>t)p ¥ T (W(s) 2y (£) for some s, t<s<t+dt)

-0

where wﬁw~nv

denotes the measure of Brownian motion conditioned that

W(t)=y. By the differentiability of ¥q only eAAnv enters in the inte-
grand. This can be seen by a scaling argument. Since the integrand is
monotone increasing in y, by Lemma 5.7 and the assumption bylt)= emAnv

we mmﬁ



82

Yo (t)
s 2 pmoeaylT, e e YT (iis) 2y, (8)  for some s, t<s<edt)
_ p,(t)dt
T P(T >t)
A 2 naoo
Proof of Theorem 5.1: We prove first
plt) _Alt) vit) £ o0,
(5.7) BToE) uﬁw\m eA\m ) {1+0 (1)) as
Let £>0 be chosen such that a+e<l. Let munAAnAﬂdmﬁﬂvmv. Let
>dﬁﬂvu sup A(u) and let & be the linear function with onvn>AAﬁw and

u€ls,t]
L{t)=y(t). Let

2(s) for 0O<uss
e_A:v = *
2(u) for s<ust .

Then <y, on (0,t].

Let muwbmﬁzvoﬂzhcvweéAcvv and let mdgﬁv denote the value of the corre-
sponding density at t. Then by Lemma 5.2

(t)
p(t) Py
5:8) 5y f PSSO

By Example 1 of Section 1 and assumption (I)

P(S>t}) 2 P(W(u)<y(s) for all O<ust)

Y{s) s -141
29 ( 75 nv

H

as s,
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The estimate of Py is the same as that of Strassen (1967, p. 325):

2(e) (x,s)
5.9)  pylt) = [ P>s,u(s)edx)p,” "7 ()
L{(s)
1 x4 (s)-x yle)-x
f L E R T RS
A 2(s)
S 16 ) .t _s t [t _s
s R ] U neﬂn,,<mAn,mv ? sTemsy (xmgv(e))ax

s
pAmwlmeAdw A

. 2 1
since  ———pm—on = +— ,

A
- 1 yit)
= MMNM eAlﬁﬂ1VAa+oA4vv

by the assumptions (I) and (II). Since m + 1 by the assumptions (II)

and (III) >Aﬁﬁu\>ﬁﬁv > 1. Combining now (5.8) and (5.9) yields (5.7).
To prove the converse inequality of (5.7), we use the corresponding part
of the proof of Theorem 4.1 up to equation (4.34). We only have to

substitute the limit operations "a » «" by "t » «", But this does not
affect the arguments. Equation (4.34) then states that

(5.10)  p(e) 2 2emr, [Wir) sk HE) o B (1v0 (1))
ﬂ

where r and k are defined as in the proof of Theorem 4.1.

We show now that
(5.11) P(T>r) = P(T>r,|W(x)|sk) (1+o(1)).

(5.11) together with (5.10) yields
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ALE) L WE) ) g0
(5.12) p(6) zP(Tor)S575 ¢ (20 (ro ()

v

>Anv $Anv
P(T>t) ¢ ( ) (t+o (1))
ﬁw 2 /E

which then completes the proof.

It is left to show equation (5.11). This is not trivial since both
sides of the equation may tend to zero. At first we prove

(5.13) P(T>r) = P(W(r)sk,T>r) (1+o(1}).

Let S=inf{u>0|W(u)2y(r)}. Since ¥ is monotone increasing and k<y(r)
Lemma 5.1 yields

(5.14) P(W(r)sk{T>r) 2P (W(r

We calculate the right hand side by using a result of Example 1 of

Section 1.

1) -o (£52UE),
(5.15) p(wW(r)sk|s>r) = eI .
meA\m y-1
Since IWMP 2 WV > » by (4.15) and since (k-2¢(r)//F + -», the right hand

side of (5.15) converges to one and thus by (5.14) proves (5.13}).

The next step is to show

(5.16) P(W(r)s -k,T>r) = P(T>r)o(1).

HeAcv for usq
Let 0<g<r be a fixed time point . Let eNAcv = 1

y(g) for u>q .

s

EEEs o o <o
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Let anSmﬁcVo#zAcvwemﬁcvv. Since emacv < y(u) for usr, Lemma 5.1
yields

(5.17) P(W(r) £~-k|T>r) £ P(W(r) s -k|U>r)

v(q)
§ p D (1 (r) sk, o) H ()

70
Potow (Ur) g (8)

-0

(x,q)

where P denotes the measure of Brownian motion conditioned that

W(g) =x and m@AmxvumacVQ~zAQVmva.

-/r
1 X
h 5 eAﬂMvax

V() -x, _
Lmﬁﬁnﬂv ;mmaé

N

T (A -o A-w-leH% {g)=x), _ H (dx)

v(q)
I
-VE

via) ¥(g) -x
l‘ﬂ\m ﬁmeAlﬁlv ._E EQAQXV

by Example 1 of Section 1. \— m.% v

vl

P(U>q,W(g)<0) Tﬁﬁvl_

A

+ %mv g (e i) ay) b (ax) : o,
-wm AWHQGE%E (dx) ) \\N ¢ X ‘...&..\
= igpral i
X ) .
with xan%mmmmx&, .9 % . 1 &Q\F\
0
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The first term converges to zero since r - @ and q is fixed. To see

that r»>», we note that by the definition of r and by assumption (II)

m
r = slgreyT

v4\<ww mAuAmQ|AV\<
s)

which tends to infinity since by (4.11) 2a-1<y holds. The second term

(k=v1)?

is smaller than exp(- 2 (=)

) which tends to zero by (4.15). This

implies that the right hand side of (5.17) converges to zero and thus
also the left hand side. This yields (5.16). But (5.14) and (5.16) imply
(5.11). This completes the proof.

ooao

A similar result as Theorem 5.1 holds for the Brownian motion with drift
f. Similar arguments as those preceding Theorem 4.3 yield the following
corollary. Let Py denote the density of the distribution of T for the
Brownian motion with drift 6.

Theorem 5.3: Let wonevﬁvvo for all t>0 and assume the conditions (I)-
(III). Then

(5.18) pg(t) = B (T>t) Wumw EEB\%W:?O::

uniformly for all BEIR as t-o.

A consequence of this result is the asymptotic behaviour of the moments
of T for upper class functions. Let ag denote the vmmwcw<m number which
satisfies omoueAmov. This is the time when the ray from the origin with

slope 8 crosses the curve V.

Corollary 5.3: Let k>0, 4s 6N0

k

ET" = woﬁeusvaAA+oAdvv .

The following considerations show that the usual Kolmogorov-Petrovski-

Erdds-test under somewhat stronger conditions is a consequence of

w_
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Theorem 5.1 (cf. Ito-McKean, p. 33). For a continuous function ¥ let the

last entrance time of Brownian motion below ¢ be given by

s = sup{s>0|W(s)zy(s)} .

If the supremum is taken over the empty set let S$=0. Then ¢ is defined
as an upper (lower) class function at infinity if S<= (S=%) almost

surely.

Theorem 5.4: Let Yy be a positive continuous function on R,. Assume that

y(t) /vt is finally increasing and eﬁnv\nQ is finally decreasing for some
WAQAA. Then ¢ is an upper class function at Infinity <f and only iIf

©  Y(t) vi(t)
o ( ydt < «
\. € ) \m

for some ngvo.

Proof: We assume first that ¢ is continuously differentiable and that

it satisfies the assumption (III) of Theorem 5.1. Without loss of gener-
ality we can also assume that assumption (I) holds which means
y(t)//t»». Another modification of the boundary is necessary. Without
changing the properties of S, we can change the boundary on a finite
interval Ao\ﬁov such that P(T>t}>0 for all t>0 holds. Then

(5.18) p(T<») = 1t if and only if P(S=x) = 1 .
This follows from the inequality TsS for the pathes which cross the

boundary, and by the assumption "P(T>t)>0 for all t".

Now Corollary 5.1 together with (5.18) imply the result for smooth
boundaries.

For arbitrary continuous boundaries one obtains the result by regular-
ization just as in the proof of Corollary 3.7 of Strassen (1967).

ooo
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Now we turn back to the case that the boundaries recede to infinity.

The following result gives an approximation on the whole positive real
axis. It states that for lower class functions the global second order
term of Theorem 4.4 becomes a first order term when the approximation

is uniform on b~+.

Theorem &5.5: Let ﬁem“mmﬁm+w be a set of monotone increasing, continuously

differentiable functions. Assume that
(1) emanv\\m¢8 untformly on R as a»®,
1

(II') there exists a constant MAQAA such that emanv\ﬁﬁ is decreasing,

(III')} for every €>0 there exists a 6>0 such that for all a
[wils) /vty =1[<e if |s/t-1]<s

for m~nmu~+~

(IV') there exists a y>0 such that P(T_<y) + 0 as a - o.
a

Then

>mAﬁv ewanv
vmﬁﬁvnwﬁemvﬁv MMQMI ealﬂm1IVAA+oAAvv

untformly on R, as a > =

The proof of Theorem 5.5 follows by combining the arguments of Theorem
4.1 with those of Theorem 5.1. -

With our method of proof it is possible to refine the statement of
Theorem 5.5 by a second order approximation, which improves Jennen's
result, Theorem 4.4, in the same way as Theorem 5.5 does the tangent
approximation. The details will be discussed elsewhere. We close this
section with giving necessary and sufficient conditions for the tangent

approximation.

[y
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Corollary &.4: Let the assumptions (I')-(IV') hold. Let Adm“mmu~+w

denote a function with lim :m = ®, Then
ar«
A () v, ()

@wAnv = MMHM! QAIQNIIVAA+OAAVV

untformly on Ao~rmv as a > © if and only <f MAemAsmv > 0.
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Supplement: The tangent approximation is a formal saddlepoint approxi-

mation.

The theory about the tangent approximation has been presented in the
preceding chapter as an extension of the fluctuation theory of Brownian
motion. There is another view possible which appeared so far mainly
(somewhat hidden) in the proofs. It is from the large deviation stand-
point. To describe it we need some well-known facts about the saddle-
point approximation. For a detailed discussion of this topic see Daniels
(1954) . Here we proceed non-rigorously.

Let xé.xm....~xs be independent identically distributed random variables
with probability density wéﬁxv and with finite moment generating

function M(8) = ammxvdAxvmx in a vicinity of 8 = O. Let K(8) = log M(8).
n

K(8) is infinitely often differentiable and convex. Let m: = I X,
i=1

M: = m:\: and P, be the density of the distribution of M:. The saddle-

point approximation of vaxv is given by

(s.1) B (x) = 4\}=i)| exp T::? - x@;
27K (8)

A

where 8 is defined by K'(§) = x.

For many distributions
(S.2) @sAxv = m:AxVAA+oAAvv

holds uniformly in x when n + = (see Daniels (1954)}).

P, can also be expressed by the Legendre-transform of K, the entropy

function. It is given by H(x) = sup {6x - K(8)} = 8k'(§) - K(8). Then
8

(S.3) m:Axv = ,\:w“Axv exp(-nH(x)) .

H

e e s s

v 5
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The saddlepoint approximation unifies the central limit theorem, the
law of the iterated logarithm and the law of large numbers in a distri-
butional sense, since these laws are consequences of (S.2). Of course,
the usual large deviation statement also follows from (S.2). Let p =

| xp(x)dx = EX;. Let AcR with (u - e, u + €)eA®. Then by Laplace's method

lim ! log P(X_ € A) = -inf H(x).
n
n-ew X€EA

For later purposes we express Py in a form with a more statistical
interpretation. For all parameters 8§ with M(8) < « let m® :Amxv =

1
exp(n(bx - NAmvvvv:Axvmx denote the measures of the exponential family

generated by <R Then 8, defined by the equation K'(8) = x, is the
maximum likelihood estimator of 6, and

) aps 4 -1
nf” (x) —II!?J holds.

2m mmo\:

(s.4) B, (x) =

So far we considered the saddlepoint approximation of the density of the
(random) drift AMWV for a fixed sample size n (which of course increases
to infinity). The question arises whether similar approximations hold
for stopping times ﬁem“ a > 0} which increase to infinity when a » .
Such a situation has some additional features. The history of the paths
will play a role, overshoot effects can occur and the Laplace transform
of wm for a stopping time T in general will be unknown. All this makes
the analysis more difficult than in the fixed sample case and implies
that the saddlepoint technique of complex analysis, which leads to the
name of the approximation, cannot be applied in general. Nevertheless

it can be shown that results of the type (S.2) still hold for an
approximation term, which is formally of the type (S.1). We call it the
formal saddlepoint approximation* and discuss it in more detail for the
case of Brownian motion. (The random walk problem has been considered

by Klein (1986).)

*H. Dinges has proposed the notion "Wiener germ" for approximations of
the type (S.1), (8.2). By choosing a completely new name he wants to
point out that those approximations are not necessarily linked to the
saddlepoint technique of complex analysis.
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Let W(t) denote standard Brownian motion. Let y(t) denote a positive
concave function on R and let T denote the stopping time
T = inf {t > O|W(t) > ¥(t)}. For a given t let

(S.5) wo= Y(t)/t.

Since ¥ is concave (S5.5) establishes a one-to-one correspondence between
t and u. We write n: (respectively :nv when we consider t as a function

of u (r as a function of t).

Now we calculate the formal saddlepoint approximation for Hp = y(T) /T
by (formally) applying the formula (S.4). Let wm denote the measure of
Brownian motion with drift 6. The Radon-Nikodym derivative at time T is

given by

exp (6W(T) - Jo’m)

exp (8y(T) -

For T = t we get (with u, = ¥(t)/t)

= exp(t(ou, - 20%)).

a PN

Let oe denote the maximum likelihood estimator me = y(T) /T. Formula
(§.4) and (S.6) yield

n: dPg -1
(5.7) B (1) 7 ﬁmlel W a

95

ﬁc. 2
PE mwanﬁc w/2).

i

This formula is formally of the type (5.2) although here sample size and
drift are coupled by the equation (5.5). Of course @e can also be ex-
pressed by the relative entropy:

t
K -
= exp( n: H(p))

(s.8) meA:v

where H(y) = sup{6y - W@NW
5}

The results of Section 4 can be translated to statements of the type
(S$.2). For that we show that after a change of variables the formal

saddlepoint approximation becomes the tangent approximation and con-

versely.

Let pg denote the density of the distribution of bp = Y{T) /T and let
p denote the density of the distribution of T under Brownian motion
with drift zero. Then

Qt.ﬂ
plt) = -pplu) w5 -

ac
ﬁ-misu-\:s. u -.
But 4t T I© Alﬁ V IIGN with A(t) yt) ty'(t). Thus

[
kel

(s.9) pit) = &dE) e@lwmwv )

Of course the formal saddlepoint approximation transforms in the same

way and becomes for p(t) by (S$.7) and (S.9):

Am.aov meu:uv E@H AEV
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which is just the tangent approximation.

We look now back to Section 4 and translate Theorem 4.2 to an approxi-
mation result for Bope Of course we use the setup of Section 4. By the
formulas (5.9) and (S5.10)} the statement of Theorem 4.2 beconmes

(5.71) py (w) = By {u) (1+0(1))
a a

uniformly on the intervals (O, Wm\mv as a > ». We leave it to the reader
to translate the other results, for example those of Section 5. We
finally note that statement (S.11) holds for straight lines without a
o(1) -term. For random walks Klein (1986) has derived similar results

to (5.11). Of course in his case problems with the overshoot occur.

We close this section with some background information about the organ-
ization of Chapter I. It starts with the general method of images, since
the tangent approximation can be derived from it in a natural way (see
Section 3). Originally we tried to derive the tangent approximation from
the method of mixtures of likelihood functions, but we did not succeed
in general. The basic idea for that approach consists in cmwwm n:m
following formula, which looks quite related to the formal mmmawmmoHSﬁ
approximation:

2
(5.12) P (t < T <t = f o e M T 2Ty
° ° {t_<T<t, } V=T
[] 1
with Q = \m : . Equation (S.12) is a direct consequence of the

optional mnovkuo theorem applied to the martingale (under Q)

dp /2T

Qmo\n B AQOn vnd ) AH mm:~ﬁ au vJ;
o,t

t _-W(t)2/2t
e
27

v i

AT e

i
3
i

IS iy 5
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Since one can express equation (S.12) also as

m
-y (T)“/2T
P {t, < T < ty) = ! Vord mcﬁ\m.m v gﬁmoAHAﬁAWv

one is tempted to conclude by the strong law of large numbers, that its

right hand side becomes asymptotically equal to

2
t -yt )7/2t
%O m e 53 r«nmt. ,

kq

where Byv i=0,1 is given by the solution of the implicit equation :Hnw =
Y(g,;). The crucial difficulty with that idea is to show that
i

2
{5.13) m:?\e. e W(mT/2T

1 )
ﬁnerAwgu

2
-yt )°/2¢
H F(1+0(1))

holds for p € At_~tov when § recedes to infinity. For nearly parabolic
boundaries this can be done (see Lai~Siegmund (1977)) since the ex-
ponential term of the left hand side of equation (S.13) behaves nicely
and is nearly constant. This is not the case for straight line boundaries
or those of the form ww9~ O < a < 1/2. For those (S.13) does not hold.



CHAPTER II

OPTIMAL PROPERTIES OF SEQUENTIAL TESTS

WITH PARABOLIC AND NEARLY PARABOLIC BOUNDARIES.
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1. Bayes tests of power one

Let W(t) denote Brownian motion with unknown drift 6 € IR and m® the

associated measure. We consider the following sequential decision prob-

lem. Let F be a prior on R given by mn<&0+A4:<VHeA\m®~\QO with 0<y<1
and ¢(x) = o e * \m~ consisting of a point mass at {6=0} and a smooth

vanm
normal part on {6=0}. Let the sampling costs be c8?, with c>0, for the

. We
8
assume also a loss function which is equal to 1 if 6=0 and we decide

observation of W per unit time when the underlying measure is P
in favour of "@=#0" and which is identically 0 if 6=0, A statistical
test consists of a stopping time T of Brownian motion where stopping

means a decision in favour of "g=0".

The Bayes risk for this problem is then given by

(1.1)  0(T) = yP_(T<=)+ (1-y)c Eémei\me,\m%.

In this section we investigate the "optimal" stopping rule am which

minimizes p(T).
For the cost ¢ sufficiently small, em is a test of power one for the

decision problem mo"ouo versus ma"muo. This is by definition (cf.
Robbins (1970)) a stopping time T which satisfies the conditions

(1.2) werAst 1
(1.3) m@AeABV =1 if 8 = 0.

A typical example of a test of power one is given by

t+r
r

(1.4) euusmﬁnvow_z.nv_w\pn+nvapomﬁ }+2log b)} with b>1.

For it holds mer < svuvaA as is shown by Robbins-Siegmund (1970) and

by Theorem 2.1 of Chapter I.

i
H
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The following rough geometric argument indicates that tests with nearly
parabolic boundaries will be good procedures for the risk (1.1). For
the problem of simple hypotheses given by

(1.5) PAT) = YP_(T<®)+(1-Y)CE E,T ,

we know from the introduction that the optimal stopping rule is equal
to

(1.6) HMu inf{t>0 | W(t) 2 log al(y,c)/8 + monv

1

with a(y,c)=y{(2(1-y)c) ' when a(y,c)>1 and HMuo otherwise. This means

that the optimal boundary is given by a straight line with slope 6/2.

One gets an idea about the optimal boundary for the risk (1.1) by
varying the solution of (1.5) over the different drifts 6. The lower
envelope of the optimal straight lines log a(y,c)/8 + Wow is given by

_A\N. csmowwcsmnmwm this parabola does not

the parabola {2 log al(y,c)t
define a test of power one. There is, however, a grain of truth in this
argument, which becomes apparent by a refined heuristic consideration
given in Section 2 and by the following exact result, which is proved

in Section 4.

Let Hm denote the optimal stopping rule for the risk (1.1). Its exist~
ence can be shown by backward induction.

Let mx r denote the posterior distribution with respect to the prior F
’

given that the process (W(u),u) has reached the space-time point (x,t).

Let N(p,0?) denote the normal distribution with mean u and variance o¢?.

-1

For the prior Mn<m0+A4|<vao‘n ) the posterior is given by

X 1 )
t+r't+r

(1.7) Fyopo= v (x,8) 8% (1=y (x,£) )N

<amo~nﬁxv

vap o (x)+ (1=y) [ ap, \ (x)IN(0,x ') (d6)

where

yix,t) =
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- Y
dp
v+ (=1 2 5 (%) 6(/F8) /Eds
o,t
with
© dp 2
9,t - r X
(1.8) Msﬂ (x) ¢(/TO)vrds = o o ) -
’ 1
We note that zﬁwwn\nun, is the posterior at (x,t) with respect to the

prior zﬁo~n|_

). Therefore the formula (1.7) expresses the following
fact: the conditional posterior distribution of 6, given that 6=0, is
the posterior with respect to the conditional prior given that 6=#0. The
same for the conditional posterior given that 6=0 holds. Thus the pos-
terior mx~w transforms in canonical way with respect to the singular and

absolute continuous parts of the prior.

Let T, = inf{t>0|F {0}sa}.
A w(t),t
This stopping time defines a simple Bayes rule for a given 0O<i<1. Ob-

viously it can also be expressed as

« dp
T, = inf{t>0] aﬁwrw 6(/E8) /Ea82b (v, 1))
-0 Q,
with b(y,)) = hﬁﬁwww . A simple calculation using (1.8) shows that e»

coincides with the test given by (1.4):

T, = inf{t>0]|W(t) _w\?+3 (log RMWW.T,NHOQ bly,x))}.

The following theorem states that the optimal stopping rule em is
bounded from above and below by simple Bayes rules. The details of the
proof of Theorem 1.1 are discussed in Section 4. Alsc a refinement of
the result is given there.

Theorem 1.1: There extsts a constant M>2 such that for every c>0

(1.9) T ST* < T holds.

Mc

sax sy

oo

s £ €Syt G, i e

v
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We draw one conclusion about the asymptotic shape of the boundary of

em from Theorem 1.1. Let e#\nﬁnv denote the optimal stopping boundary.

It is intuitively clear that by symmetry Hm can be expressed as

T4 = inf{t>0]|wW(t) | 2y, (8) 3.

Thus (1.4) and (1.9) yield the following result.

Corollary 1.1: For c fized

(1.10) ¥ (£) = (¢ log )72 (150 (1)) as t .

Statement (1.10) was the first result of our study. We derived it at
first heuristically from the tangent-approximation. This approach is

discussed in the next section.



2. An application of the tangent approximation: a heuristic derivation

of the shape of Bayes tests of power one

This section describes our original approach to the problem of calculat-
ing the shape of Bayes tests of power one.

For the first exit mmsmwﬂwmm of one-sided boundaries e which satisfy

the conditions of Hdmowma 4.1 of Chapter I, holds mmaﬁv:@wvaag+oAAvv

uniformly on R, when a»w. Here

A_(t) Y .
aﬂemAﬁv~nv = 372 ¢ (————) with

A (8)
Ve

>mAnvnewva|nemaﬁv.

We apply the tangent-approximation to the Bayes problem according to
the following program:

1) First we rewrite the Bayes risk

P(T) = YP_(T<=)+(1-y)c R@wmmeeA\MQV\m de

as an integral over the Brownian motion without drift:
p(T)=E_k(|W(T) |,T).

2) For the relevant competitors for optimality T=inf{t>0| [W(t) |2y (t)}
we use the tangent approximation for the distribution of T,

(p{t) = 2qg(y(t),t)) and rewrite the Bayes risk (approximately) as an
integral over time

m

p(T) = Ek(|W(T)[,T) =2[ k(¥ (s},s)q(y(s),s)ds .

3) Then we vary ¥ and compute the optimal solution asymptotically

when t - «,

For simplicity we go through this program with <uW. We show at first

3 2
mean value p and variance o

0

J8?EqTovTo) /T do= for (J(T+r)ap,) ¢ (vre)/Ede~1

-0

:?nihﬁz&mf
= () (G Zoyag-n
W(T)? .=
= Sy 90
But by equation (1.8)
dQ r 12 W(T)?
(2.2) =5 ea = () Pexp ey -
(o}

Combining these formulas we obtain (2.1).

For the second step of our program we rewrite the risk
We introduce T=inf{t>0||W(t) |2¥(t)} with y(t)=[ty(t)]

Ty (T)
2 (T+r)

Ty (T)

(1 +cv¥
Ae+n,w\m

o) =1 exp

{T<w}

; . At)
Plugging in the tangent-approximation 2

Kh&Wﬂ yields

Alt) =

G:uvlﬁe.Aﬂv = WﬁRV\Aﬂu.ﬁA\NAA -t

By Fubini's theorem we get

)1dP

(2.
1/2

1 ¢ w(r)? SAevnv,Qv
= 3 (1 +cv/T exp (v
(2.1) DS..J 2 S”_Moow i 2(T+x) [¢]
let 0= %m $(Yr9)/rds. Then
¢ (W) 6 (Vr VT8)Yrdes= ozaﬁv.ﬁAumvoAmzv
with ox |2AMHM n+wv where N(u,0?) denotes the normal distribution with

1) further.
and get

${vy(t)) with
nuwm



106

(L A - t
P(T) =3 o = Kr) (exp (-y/2) veVE ) 372 TP T ) dt.

Now we try to minimize the integral on the right hand side, whose

integrand we call F(y,y',t). For a minimum of %Mmﬁw~<.~nvan\ it is

necessary that the Euler-lLagrange equation F_ - MIm = 0 holds (see

y dt'y'
Courant-Hilbert I, Chapter 4). By a straightforward but lengthy calcu-~

lation this reduces to

1/2
_ -yt cyr t _ 3ti+tyr] _
U=yIexp ey oy 172 ~¢n+u An+nv~g =0
n+ﬂ A\m

from which finally y{t) ~ [(t+r) (log(
statement agrees with Theorem 1.1 and pﬂm corollary.

follows when t + «, This

By playing around with equation (2.2) we can derive an exact upper
bound for the optimal stopping region for the risk (1.1). This risk can
be expressed as

_ T+r)1/2 W(T)? W(T)?
(2.3) p(T) = aA<A mchnmAmHM%v+AA|<vo %+W )dd
W(T) =
= ﬂL".wlx?imo
% AH+Hvd 2

with g(A,t)=y/t/r exp(-A2/2)+(1-y)cA?.

The slightly modified problem

(2.4) ?:EEI

, T+r}d0 = min
(o) 172

with h(i,t)=y/t/r exp(=A?/2)+(1-y)c(A?*-log t/r)} has
S*=inf {£>0] W(£) 21 (£+1) (Log (55)+2 log )17/} with byl as
optimal solution.

This can be seen as follows. With the help of (2.2) we get

¥
t
4
i

e

TN 0 s L N Rk o

[
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_ a,

(2.5) ?TEJ T+r)dd = ?ALEO
1 ap
(T+r) o,T
with 2()A) = <y|A+ 2(1-y)c log A. The function 2(X) for A>0 has a unique
Qo
minimum at A(c)=y/(2(1-y)c). Let S*= pzmﬁwvo_am 2x(c)}. Since
o,t

Q{S*<o}=1 we get from (2.5) that S* minimizes n:m risk (2.4). As we
know already from Section 1, S* is defined by the nearly parabolic
boundary (1.4).

The optimal stopping rule for the risk (2.1) is bounded by $* since for
all t>s and x,ye€R

hiy,t)~h(x,s) £ gly,t)-g(x,s) holds.
This yields one half of the proof of Theorem 1.1. The other half is more
complex and will be given in the overnext section. There the method is
less ad-hoc and the statistical background of the problem is studied

thoroughly.

The optimal stopping problem

(2.6) HmAummmph

/T+T

B H+Hvam = min

is closely connected with a free boundary problem for the backward
diffusion equation. The minimal posterior loss at the space-time point
(x, nv W(T)

(x,t) is given by u(x,t)=inf ma A\&II , T+r) where the infimum is
taken over all stopping times T of the process (W(v),v) which starts
at (x,t). Since the infimum includes also the constant stopping time
an t, it follows that usg, where §(x,t)= @AHlFI~ t+r). By using similar
arguments as Chernoff (1972) we show that u mmﬁwmmpmm the equations

(2.7) )

1.2 - X_ 5
t2°x ' t+r X

on the set T={(x,t) |ulx,t)<d(x,t)}, with y(x,t) defined in the formula
(1.7),



108

s u = 3 g on the boundary 3T.

These equations establish a free boundary problem corresponding to the
original optimal stopping problen.

In Section 4 precise bounds for the free boundary are derived. If we
consider instead of the problem (2.7) the related one where g is sub-
stituted by h, the free boundary turns out to be exactly

t+r
r

(2.8)  y(t) =+ Tfi:oi )+2 log v;:w .

AR

niresn

o

L e,

oy he o

o

3. Construction of tests of power one from smooth priors and the law of

the iterated logarithm for posterior distributions

The simple Bayes rules defined in Section 1 are constructed from a prior
which has a point mass at 6=0 and a smooth normal part on {6=0}. Here it
is pointed out that it is also possible to construct a stopping time
with the properties (1.1) and (1.2) from a smooth prior. This can be
done by stopping when the posterior mass of a neighbourhood of §=0 be-
comes too small.

Let ax € denote the posterior distribution with respect to the prior
’
¢ (/TH)vTde given that the process (W(v),v) has reached (x,t).
- X 1 2 . : R :
mx~n zﬁﬁ+w~ﬁ+nv where N(u,0?) denotes the normal distribution with mean

u and variance o?. Let ¢(x)= MSQvamm. Let y(t) be a function with the
properties 1) eawvaOVO for all t, 2) yY(t) is an upper class function
of the Brownian motion at infinity and 3) y(t)=ol(t). Let

uﬁnvuho__a_mmhmvv.e:m: the stopping time

@ (6)) s3-0(-2%{EL) s

T=inf {t>0]G T

w(t),t
has the properties (1.1} and (1.2). This can be seen easily by noting
that T can also be written as T=inf{t>0] [W(t) [2¢(t)}.

This equivalence suggests that also a law of the iterated logarithm for
posterior distributions holds. In fact this is true and it can be stated
as follows. Let HoAmvuAm|o~m+ov denote the interval of length 26 with
midpoint a. Then the law of iterated logarithm for posterior distribu-

tions states that

1 a»vz
lin inf G, ) w_HG (d wmm|wwm;mv_uﬁ if
too ’ o 0 dsvZ
P - almost surely.
8
o
For more information on this type of theorem see Lerche (1981), (1982).

In the next section where the optimal tests for the risk (1.1) are
studied in detail, it will turn out that the construction described
here plays no role at all. The simple Bayes rules which are constructed
from priors with a point mass at 6=0 are the important stopping times

there.



4. Exact results about the shape

We consider the problem stated in (1.1): for every 0<y<1 and c¢>0 find

a stopping rule am which minimizes the risk
o
(4.71) olT) = yP (T<=)+(1-y)c [ 62E, Té(/T9)/Ede.
- OO

At first we state that an optimal (Bayes) stopping rule e* exists. Then
we derive its shape. Theorem 4.2 gives upper and lower Uoc:am for e*
which yields the asymptotic shape when c~+0 or t-w. Theorem 4.3 Hmmy:mm

these bounds such that a o(c) ~approximation of the minimal Bayes-risk

can be derived in Theorem 4.4. Theorem 4.5 discusses the one-sided case.

We need the following notations. The Brownian motion W with drift 6
starting at time t in point x is understood as a EmwMCKm wa t) on the
space C[t,~) of continuous functions on [t,=). m denotes wam o-algebra
on C[t,~) which is generated by W(u), t<uss. The HmmnnpOﬁwos of the
measure wnx t) on mn is denoted by mAx nv. This notation is also used
for mnovv~=@ times m instead of mwxm& nwamm S$. When the process starts
at 0 at time 0, then we very often skip the superindex and write just
mm~ Mm s etc.. The Borel olmwamvmm on the parameter space R is denoted
by B. For F=v§ +AA-<.\\19A\1@VQQ let dP=dP F(d8) and aP= mARm F(d6)) be
its projection. Let mx v denote the vOmanHon distribution given that
the process W(t)=x. This means that for »xwmmnem

Hv Wit) ,t vamaazvlwAbxmv holds. Thus the Bayes risk (1.1) can be re-
written as

:.525 "&Amzsfe:otaa-% 8% Fy(q)y,7(d8))dP .

Let mAx €) denote the conditional awmnnpvcnpo: of P given that the
process W(t)=x. It can be represented as max nvukw.x nv x nAmov.

’
We define the posterior risk at the space-time point (x,t)
ping rule Tzt as

for a stop-

(4.3)  pi(x,t,T) = %Amzﬁev~eAﬁovv+er-nv“ 8% F

(de))ap (Xt)
{T<w} -

W(T),T

I S

Y
!
i
i
i
i
t
i
<
#
3
7
£
H
;
H
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The minimal posterior risk at (x,t) is defined as

(4. 4) plx,t) = inf p(x,t,T),
T

where the infimum is taken over all stopping times of the process
(W(s) ,s) starting at (x,t), including anmﬁ. For ﬂﬁ the risk is given
c<

(4.5) y(x,t) = oAx~d.eﬁu = wx\nAﬁowV

and therefore the inequality p(x,t)<y(x,t) holds. The quantity
qu~w~ev+0ﬂhonx
out stopping up to (x,t) and then is stopped at T2t.

wAmmv represents the loss when the process runs with-

The following theorem states that“an optimal (Bayes) stopping rule
exists which minimizes (4.3) and characterizes it.

Let ¢*(c)={(y,s)|o(y,s)<y(y,s)} and

(4.6) em = inf{s]| (W(s),s)€C*(c)}.

Theorem 4.1: The stopping rule Hm (2t) of the space-time process

(W(t) ,t) minimizes the risk (4.3) for all starting points (x,t).

This type of result is well known. Its statement is usually called
the principle of dynamic programming. The result follows from the
theory of optimal stopping for Markov processes (cf. Shiryayev (1978),
p. 127) applied to the space-time process (W(t),t). We note that W(t)
under the measure P is a diffusion process which satisfies the

W) geeax(e)

t+r
where X(t) is a standard Brownian motion (cf. Liptser-Shiryayev (1977),

p. 258).

stochastic differential equation AW(t)=(1-y{(W(t),t)

The stopping risk by (1.7}, (1.8) and (4.5) is given by

- Y .
.7y Y8 = e with
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% exp (—r—rw x?

(4.8) gix,t)

n+n Nﬁw+nv
We note that on {6%0} with Gyt = zﬂﬁmm\numv
(4.9) mx ﬁAva = A_|<Aw~ﬁvv0x‘ﬁAmmv holds.

The exact calculation of the minimal posterior risk p{x,t) seems to be
impossible for this problem. We can only derive upper and lower bounds
for it. To get those we will rewrite the posterior risk in an appropri-
ate form.

Lemma ¢.1:

(4.10)  p(x,£,T) = v (x, 00" (k) +

+ -y, e))efere* ) (ret)e, @) .

Remark: The posterior risk has the same form as the Bayes risk (4.1),

with the slight difference that the process starts in the space-time

point (x,t), stops at Tzt and has as prior mx\ﬂu<Ax.nvao+ﬁé|<Ax~nvvox\ﬁ~

the posterior at the point (x,t).

Proof: Let Szt Um an arbitrary stopping time of Brownian motion starting
at (x,t). Let mm denote the c-algebra on C[t,«) which is generated by

the process W{(u), tsusS. Remember now the notation

mkx\nvu%mAx~av £ (d8). The lemma will follow from (4.3) and the sub-

sequent statements:

(4.11) ({ohas™*t) = y(x, 1ap{* %) holds on Fi, and

Fusy,s

(x,t) (x,t)
(dg)ap = 4p mx\ﬁAmov

(4.12) F g

Ww(s),s
(x, nv

4

1=y (x, t))dpg «, ¢ (d8)

holds on the o-algebra mw ® Bn{s = 0}.

o o, M A

3
3
t

e

IR R D8, 588 M B S gy 1
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These are consequences of the following basic fact about posterior

distributions.
The posterior of Brownian motion starting at (x,t) with prior mx ¢ at
’,
point (W(S),S) is given by wiﬂmv g* This is stated by the following
’,
equation:
(0,0) (0,0)
(4.13) F @0) = 285 p(ge) i mmmnm1: F (d6)
: W(s),s (0,0) (o, ov
dp mw
®
ap (x.t) mm:?
_ 8,s
4ap mw
®
(4.13) now yields for AxB € mw ®BN{6 = 0}
lax~ﬁv - AX t)
| Fys),s(B14P = [ Pg,g WF,  (d0)
A B
which proves (4.12). In the same way (4.11) follows. oao

The continuation region C*(c) of the optimal stopping rule for the
Bayes-risk (1.1) is now approximated by upper and lower bounding regions
of the space-time plane. These bounds are refined in Theorem 4.3. The
bounding regions are given by sets of the type C(\) :={(x,t)|y(x,t)>xr}.

Theorem 4.2: There exists a constant M>2 such that for every c>0

(4.14)  ClmS)cer(e) ety holds.
Remark 1: Let T, = inf{t>0]| (W(t),t)€C(N\)} then (4.14) translates to
T o STEST o i
1+Mc 1+2¢
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Remark 2:
Yro (VI (6~4)d8 by exactly the same arguments.

The theorem holds also for the more general prior

Proof: At first we prove the lower inclusion of (4.14), ivwo: is the
) (M will
of the

more difficult part. We show that for all points (x,t)eC(

H+zo
be specified during the proof) there exist stopping times mﬁx )
'

process (W(s),s) starting at (x,t), such that

(4.15) opol(x,t,s ) < y(x,t)

(x,t)

holds.

Since by definition oAx~numoAx.w~mAx ﬁvv~ it follows from (4.15) and
’
Theorem 1 that (x,t)€C*(c).

We choose the stopping times as

= i <
mtfnv inf{s>t|y(W(s),s)<Qc}
where the constant Q>1 will be defined below. We assume also that Qc<1.
(In fact the stopping times mAx t) all arise from the same stopping
’
time 600 by changing the starting point of the process.) We need several

representations of S during the proof.

(x,t)
(4.16) mﬂx.ﬁv = HSmﬁmvﬁ_mSAmv.mAhovv $Qc}
ap ¥t
= wsmﬁmvn_%u|4w|mﬂ G, (d0) zb(x,t)}
mmo~m
= inf{s>t} MHM mx©A|ASMMM~ -
where bx,t) = y(x,t) (1-Qc)

(1-v(x,t))Qc -

The first equality holds by definition, the second equality follows by
calculation since by (4.13)

iy

S
3
¥
%
£
4
3

A

e

&

ey
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- Y{x,t)
mzan\mAhOVV Ty (x, 0+ (T-y{x,£))h(x,t,w,s)
Rmm%xmwv
with h(x,t,w,s) = i G (ae) .
mm%xmwv X, t

The third macmwwm% follows by the subsequent calculation (note here

that G, =N(Zp, o)) -

gp (%t}
0.8 (ds) =
ap (x.t)
o,s
9 1g2 - AEr) g Xy
= fe (Wis)-x)=-56% (s-t) WMH e w+w a8

- xN

JTEET o ZWETE (0 (s)-30" (ser) Qo

ferx 1, W(s)? _ x?
s+r mx@A AIMHMI s

N

We start now to estimate the posterior risk for mAx £) which is given
’
according to Lemma 1 by

- (x,t) o
(4,17) oﬁx\n\mAx\wvv = <Ax\wvmo AﬁAmAx~nvAv
. HA-<Ax~nvvohoNRmx~nv-wvmoAx\nv
with the new notation oAx wvﬁmz de) =p Ax ﬁVAQSVox ﬁﬁmmv. We will also

use oAx wVAszQW (x, nVAszo nﬁamv msm will from now on simply write

5 instead of S Then we get for the first term

(x,t)"
(x,t) w) = Q¢ 1=y (x,t) _ -1
(4.18) mo (t<S<w») = =06 Ty (x,%) b(x,t) .

This follows from a well known martingale argument (see e.g. Theorem
2,1, Chap. I) by using (4.16):
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ap %/ t) . Then (4.19), (4.20) and (4.21) yield
.ﬁ 0,5 =({x,t)

=TxET 4aQ
ﬁﬁAmAm } QD t)

p Xt (teses )
(o] o

e

(4.22) %@NAm-nvmoAx,wv < 2log vﬂx\wv+09~%®N Am-nvmoAx~ﬁvg4\Q

i

qu~ﬁv-_mAx~nvAﬁAmAmov.

from which one can derive (4.15) as will be explained below.

Since oﬁx wv*ﬁAmAm }+1 as mo »> =, (4,18) follows. We note that for

(x,t)€C(Qc), Uax~wvvg holds and that thus the probability in (4.18) is
less than one.

The proof of (4.21) runs as follows. By using the inequality

HO@Ad+xvmwaé\Q for x20 we get by HOlder's inequality

To estimate the second term of (4.17) we rewrite the integral. Since on

S+r, = (x,t) _ S-t, .= (x,t)
mﬁ we have ; (4.23) log (g5)dQ = HHomAA+n+nvmo
i S- w 1/a,=(x,t)
s K, fL ag ¥
0%t (aw,q0) = NS, ae)a ) (an, : e e
we get for the integral W = K, HamuAmnnva\QAQMAn+mvv|4\9QoAx~nv
-1 a1
- (x,t) /o -1 o
: < K (f8?(s-t)dQ ) A e (errn @ (ae)) %,
(4.19) fo? (s-t1aQ*'®) = o7 (s+r)ag *rt)_fg7 (ter)ag X ¥) ; o £
- (x,t) :
= Jo7 (sern@EEL 1) (a0) ad :
But since ox e = ZAMHM ¢+Hv we get for a>3
:MON.ﬁ+mvox~nAmmv
Wis)? ~(x,t) =1 =1
= g - ' for (o)) ®la, L (@0) s [(07 (£er)) T TN(0, ) (ap)
2
= fy * TN(o,1) (dy) < .
Using now the third form in (4.16) of the stopping rule S yields
-2 a1
We now put OquQAH< Qndzgo.gvaamvv %  and get finally (4.21) and
W(s)? _ x*, =(x,t) _ S+r, = (x,t) .22) .,
(4.20) [(F=2L- Sy ¢+vao = 2log b(x, t)+ hHomAn+nvmo (4 )

Let b>1 be given, then by (4.22) there exists a constant B>2 such that

Let o>3. We show now that there exists a constant oAOQA8 with for all b(x,t)2b
(4.21)  [1o9(ZEyag*t) « oaﬁH¢~Am-wvaoAx.nv_é\a M (4.24)  fo? (s-t)a2***) ¢B log bi(x,t)  holds.
Now we choose Oud+mn and M=bB. Then for (x, ﬁvmnﬁg+20v we have

Ry L9 Ty T
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= 1-Qc _y(x,t) _ __y(x,t) Mc
bx,t) Oc T=y(x, &7 - Be(T-¥(x 61T ~ Bc

and by (4.17), (4.18) and (4.24) we get further

P(x,t,5) S y(x,£)b(x,t) ' +(1-y(x,t))Bc log b(x,t)

n

Y(x,£)b(x,t) " (1+log b(x,t))
< yilx,t) .

The last inequality follows from the inequality x(1+log x«AvAa for x«1
since b(x,t)>b>1. This proves (4.15).

Now we prove the upper inclusion. We show

(4.25) o(x,t) = y(x,£) if y(x,t)s 723

1+2¢ °

Statement (4.25) implies the upper inclusion of statement (4.14). The

method of proof of (4.25) consists of comparing the Bayes rule T* with
c

the best rule if 6 would be known.

For the Bayes rule Hm we always have

yix,t) 2 pix,t) = plx,t,T%)

,t
y(x, ) p X v:Me%st:-ix}:_i%am-c%?:

%~<.x~nvw%x~ﬁ.AnmemAsv+AA-<ax.nvVOQNm%x~nv,em-nvwox L (ae) .

"

-0

Let the process W start in x and let W(u)=Z. Under the transformation

y=6(z-x), s=6% (u~-t) Brownian motion with drift 6 (resp. 0) goes over

into Brownian motion with drift 1 (resp. 0). With mmuo~Ae*nnv we get
c

s

u Ao~ov s - ﬁo,ov
;%ﬁ<ax‘avwo (058 <o)+ (1 <Ax.nvvnmA mo_nx~n

> HMmﬁ<Ax\ﬁvmho,ovRommAsv+A_-<Ax~dvvom“o~ovm_u"mﬁx~n, .

H
k4
5
5
3
H
k
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But p(x,t) is the minimal Bayes-risk of (1.5) with y=y(x,t). We de-
termine now its Bayes-stopping set. By (1.6)

B(x,t) = min (yp+2(i-y)c log p

0<ps 1

)

1)

<60+MA4|<VO log vmg

with Py mhmmkwm,>_ Avo denotes the stopping probability). Thus
Bx,t) = N:LXTLOQE%B-; if .N.Fmim <1
and Blx,t) = vy if mumewm z 1.

The Bayes stopping region is therefore equal to
((x,t) | yix,t) = d(x,t)} = {{x,t)]|y(x,t) S v},

where Yo is determined by the equation

NAan<ovn
p. = ————— = 1. Thus y_ = .
[¢) Yo o

ooa

We now derive a refinement of the statement of Theorem 4.2. For this
we need a somewhat more general notation. If h(t) is a positive function

of time we shall denote by C(h(.))={(x,t)|v(x,t)>h(t)}.

Theorem 4.3. For every c>0 there exists a bounded function &(.)
with

[\
[o]

(a) é(t)/c » 1 when t » » for every fixed c, and
(b) sup ¢(t)/c =~ 1 when ¢ » 0,
O<t<oo
such that
28 () 2¢ :
(4.26) OAﬂHMM&Jq; c C*(c) < Oaﬂ+mnv holds.
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The theorem states that for ¢ small or t large the optimal stopping
2c
1+2¢
will show that the upper bound of &(.)/c is a bit larger than M/2 where

region is very near to its upper bound {( ). The proof of Theorem 4.3

M is the constant appearing in Theorem 4.2.
Several conclusions can be drawn from this theorem. Let

emvanH:mﬁxvo_nax~¢wu<ﬁx~ﬁvw. By Theorem 4.2 this definition makes
sense. Thus by the symmetry of the problem

TX = inflt||wWit)| > yxle)} .

Corollary 4.1:

vE(E) = Tfi:oﬁﬂﬁ; log yrrioys + 2:;5

when £ =+ «

Corollary 4.2:

emanv = ﬁ.ﬂ+nv (2 log Mﬂﬁ%ﬂﬂm + log Anmnv + oAAvv@A\N

uniformly in t when ¢ > 0.

Corollary 4.3: For every €>0 there exists a 00vo such that

< * <
T 2c(1+¢) S Ho s T 2¢ for all OAtho.

1+2c (1+¢) 1+2¢

We can combine Corollary 4.3 with a result about boundary crossing
distributions of Chapter I to get the minimal Bayes risk for (4.1) up
to an o(c)-term. A related O(c)-result for the Bayes risk has been ob-
tained by Pollak (1978), when there is an indifference zone in the pa-
rameter space.

Theorem 4.4:

(4.27) 0sgp(T 2
1+2¢

vnoﬂemv olc) when ¢ +~ 0.

X
H
s

R o

[RETTs

P

;
£
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The minimal Bayes risk for (4.1) Zs given by

(4.28) oﬁemv = NAA1<voﬁHom b + Wwoo log b +1+ Wwom 2-A+o (1)

when ¢ +~ 0, Here b= and vnmaw log x ¢ (x)dx.

—Y
2(1-y)c

Remark: Comparing statement (4.28) with the related formula (19) for

the simple testing problem, shows that the additional term

Nﬁgn<vomWHooAm log b)-A+0(1) ] appears in the minimal Bayes risk. This
is the price for the ignorance about the parameter g=0.

Proof: From Corollary 4.3 follows

(4.29) ermoAA+mv

1+2c(1+¢€)

v|<~mer 2c {1+g) < OOV|mv03_ 2¢ ¢ sv_
T+2c(1+¢) 1+2¢

A

p(TX) £ p(T

We now show that the right and the left hand side of (4.29) differ from
each other only by a of{c)-term. Formula (4.18) yields

=1

(4.30) mermoA4+mv < 8v|moae 2¢_ < ®) £ ¢b = O(ec) .
1+2c (1+¢) 1+2¢c
Now we compute p(T 2¢ ). We write from now on for simplicity T instead
1+2¢c
of T 26 By (4.18) and (4.20) for x=0, t=0
1+2¢

T+r
r

(4.31) p(m) = NA_-<VO~A+Hom b+3 flog( vao_

The integral on the right hand side can be calculated by using Theorem
4.3 of Chapter I. The following result is intuitively plausible by



122

virtue of the relation

P {T/log b 2672} = 1.

(4.32)  [log(EE

)dQ = log(2 log b)-2A+o(1).

1

Combining (4.32) with (4.31) yields

(4.33) o(T , ) = NAA,<voﬁHom b+ wmmwmmwmmnww +A->+oﬁavw.

c
1+2c

From (4.30) and (4.33) it follows also that

2¢(1+¢) ) = p(T 2¢ ) + O(ec).

1+2c (T+¢€) T+2¢

(4.34) op(T

Statement (4.34) together with (4.29) and (4.30) yield (4.27) and (4.27)
together with (4.33) yield (4.28).

ooo

Proof of Theorem 4.3: The upper inclusion of (4.26) is already proved

by (4.25). Now we prove the lower one. For the stopping times

2c }

(4.35) s = inf {s>t]|y(W(s),s) < TI5e

(x,t)

we show that -

(4.36) pix,t,s

2¢ ()
Ax~nva<Ax~¢v for (x,t) € nAA+NaA vv/aAA+30v

where ¢ (+) will be specified below. M is the constant of Theorem 4.2.
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Then (4.14) together with (4.36) imply the lower inclusion of (4.26).

Now we define &(t). We note that for the stopping times (4.35) by

(4.22) with =4 and b(x,t) = =YX,

(T-y(x,t10¢ the inequality

(x,t) Ax\wvgd\b

(4.37)  [8* (S-t)dQ < 2log UAx.nv+oﬁx~ﬂv~%o~Am-wvmo

holds. The constants C(x,t) are given by

|A\wm 3/4

(4.38) C(x,t) = K(f(8* (t+x)) ¢ (d8))

-2/3

= k(fy 23N (ov/ETE, 1) (ay 374

with § = .

Let e and e denote the vOmpnw<m and nmomnp<m branches of the solution

of ﬁSm PBvaown equation <Ae (t),t) = A+ZQ . By symmetry eu =ty

where Ve is given by

GA\N

be®) = [(err) og(5E) + 2109 7=

We choose

1/4

(4.39) ef(t,c) = |H0@AinoneoAn-nv }Alog M/2

and put c(t) = c exple(t,c)). Let a > 1. Let
d(a)=inf{y>1]a log(ay)<ay-1}. d{a) is uniquely determined. We define
&(t)=a(c(t)/c)c(t).

Now we claim that ¢(.)/c has the demanded properties (a) and (b). By
(4.38) C(x,t) depends only on |8/T7F| = %W%W . Evaluating |6/%t+r| at
the graphs Awenﬁﬁv~nv yields:
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3 ~ Y
|6vEFT| = MwomAn+mv + 2 log =y

'

ga\m

which tends to infinity, uniformly in t when ¢ -+ 0, or when t -+ o,
Consequently naweoAnv~nv +~ 0 and therefore by (4.39) e(t,c) » 0,
uniformly in t when ¢ - 0, or when t - «. Since d(a)-1 as a->1 the
properties (a) and (b) follow.

Now we show (4.36). As a first step we prove

(4.40) cjer(s-)ao*®) < 23(t)1og b(x,t)
2c () Mc
for (x,t) € Clyaray)>Chame) -

By (4.39) we can assume that G(t) < Mc/2. Let H(x,t)=]6?(s-t)ag ¥+t

Then we have from (4.19), (4.20) and (4.37) (with the x and t variables

suppressed)

(4.41) 2 log b < H < 2 log b+cH'/%,

M
Let Ci{t) = C(y (t),t). Then 0 < Clx,t) < C,(t) holds on Clyip=)°
and therefore

(4.42) Ai-og\mw\b

JH < 2 log b.

If

(4.43) bi(x,t) > exp(y C,(t)) -

2¢ (s
holds for (x,t) € QAMHMM$d%v/nﬁqwmov then we get from the left hand

side of (4.41) OAAnV < H(x,t) and therefore from (4.42)

H(x,t) < 2 log(b(x,t)) (1-¢, (&) /%)~

o s

3
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But this yields (4.40).

It is left to show that (4.43) holds.

Let c(t) = llllMll!wN / mx@AW oéAﬁvv. An elementary calculation shows

1-C, ()
that c(t) » ¢ for 0 < oanwv < 1. Then

- KAX-A.\V
blx/t) = s (x,000c ~

Y(x,t)
2{(7-v{x,t))c(t)

¥(x,t) exp (5C, (£))

2(1-v(x,t))C(t)

v

1
mvaMOAAnvv .

The second equation holds since

ge) = cti-c, )/ < w2,
and the last inequality follows from the definition of nﬁﬂmmWwWﬂ

proves (4.43) and completes the proof of (4.40).

Combining now (4.17) and (4.18) with (4.40) yields for the stopping
times (4.35) the estimate for the Bayes risk

1

(4.44) ol(x,t,8)<y{(x,t)b(x,t)  +2(1-y(x,t))c(t)log b(x,t)

y(x,t) 25(.) Mc
v, 07 o CmEeay) S Yo

with b(x,t) = ).

2¢(.) Mc
T2a () e
hand side of (4.44) further. It is equal to

We assume now that (x,t) € C( ) and estimate the right

(4.45) v(x,t)b(x,t) 1 [1 +(3(t)/c)log b(x,t)]

= Y (x,8) [h(x,8)3(t) /c] ™ [1+(3(t) /c) log (h(x,£) & (t) /c) ]

with h{x,t)=y(x,t) /(2(1-y(x,t)c(t}).

} . This
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Since Amwvniﬁd+m.pomﬁm<vai for y>d(a) and since on n.dWWWNWVV.
h(x,t)>d(c(t)/c) by the definition of &, it follows that the expression
of (4.45) is strictly less than y(x,t). This yields (4.36) and completes
the proof of Theorem 4.3.

odo

In the last part of this section we study the one-sided testing problem.
We consider the Bayes risk given by

o

(4.46)  o(T) = yP,(T<=)+(1-y)c [ 0?E T¢(/re)2/T de.
o

For it we can characterize the minimizing stopping rule em (it also
exists) by results similar to those for the two-sided case.

If not mentioned otherwise we will use the same notations as in the

preceding part for the corresponding objects here. For instance

yi(x,t) mx,nRAOVW

mx|W®nn

(1+ Alm« [ e o (8/F)2/5de) 7T,
o]

and also p(x,t,T),p(x,T),C*(c), C(Kc) etc.. The prior on [0,w) is
given by

F = y§_*+(1-y) [¢(/T6)2/rds.

The posterior at (x,t) can be represented as

~ _ - X 1 X
mx\n|<Ax~wva0+Ag <Ax~nvvmx\n where mx\w zan+n‘n+wv\eAwﬂmﬂv on (0,).

We only state the analogous result to Theorem 4.2. The counterpart to

Theorem 4.3 holds also and can be proved exactly in the same way as
Theorem 4.3.

Theorem 4.5: There exists a constant K>2 such that for every c>0

(4.47) ¢ (55 < cr(e) e oS

TIRS 7338 holds.

e

AR I Aot T
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Proof: The proof of the upper inclusion of (4.47) runs exactly along
the same lines as that of (4.14). For the lower inclusion we show that
for all (x,t) € C(Kc) there exists a stopping time S
(W(s) ,s) starting at (x,t) such that

(x,t) of the process

plx,t,S ) < y(x,t) holds.

{(x,t)

Let Q denote a constant which satisfies Qc<1. We choose

Six,t) ~ inf{s>t|y(W(s),s) < Qc}

which can be rewritten as

- Qmﬁx~nv
_ 8,s
(4.48) s 4y = inf{s>t| | FER mx~ﬁAm®v 2 bix,t}}
°© o,s
. o (55l
. t+r 1, W(s) x? S*L
= infletlgr e - w) s, e
Awﬁ+H
Yy
with  blx,t) = {EELOSD and oy = Jomax.
The posterior risk at (x,t) can be represented as
= (x,t)
(4.49) oﬁx\n~mAx\ﬁvv = <Ax\¢vmo AﬁAmAx~nvA8v +
(I-y(x,t)e | ®~m%x\wvAmhx~nvlnvmx~ﬁAm®v.

(o}

From here on we write S instead of mAx £y The same martingale argument
’
as for (4.18) yields

mwx~nV~¢AmAsv = bix, ).

The estimate of the other part of the Bayes-risk (4.49) is a bit more
complicated as that of the corresponding part of (4.17). It can be ex-
pressed after some calculations similar to those of (4.19) as follows:

(x,t) -
(4.50) [o’Eg (S-t)H_  (d8) =

’
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=(x,t) W(S)

+%A3Aﬂﬂﬂqv ?Aﬂﬂﬂﬂvvﬂlﬂx 't

| Samv~
= Jt S+r

with h(y)=y¢(y)/6(y) and oAx~ﬁw-H pF )y (ae).

Using the defining equation (4.48) of the stopping time S yields

7 2 Axsﬁv - =
(4.51) %m Eg (S-t)H, (d6) =

S+r
t+r

(x,t)

2 log b+[log{z~=)dQd

(x,t)

+

Hﬁ wmwmv :Awﬂnu,_mo

with g(y)=logd(y).
Now after some calculations we get

wW(S)
7

W(s) W(s

(520 ndiEh nEm-o[s G -s i | - T 20t gy

X
Um._yH.

W(S)

T (1)

= - 2y
m 0y ﬁ (1+y?) :vaa
YT+r

But this integral is always negative. It is obvious that the integrand
is negative for positive values of y. That it is also negative for
negative y-values can be seen as follows. We have to show that

(4.53) ~(1+y*)-yo(y)/d(y) s 0 for y<0

which is equivalent to

=(1+y?) (1-3(y) }+y¢ly) § 0 for y>0

and to

el
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(4.54) 1-3(y) 2 (y/(1+y*})o(y) for y>0.

Both sides of (4.54) vanish at y=« and the derivative of the left hand
side is always smaller than that of the right hand side and both are
negative, i.e.
2
—o(y) S -¢(y) (1=2/7(1+y*) ) for all y»>0.

This yields (4.53) and therefore the integrand in (4.52) is always

negative.

. wW(s) X K
It is Hmmmono show that Versd > Fereraib Now let TIRE > Q. Then
Ax~ﬁvmoﬁé+xnv implies y(x,t) > Qc, which yields b(x,t)>1. This together

with (4.48) implies for S>t the inequality

x? wi{s)?
2(t+r) X t+r 2(s+r) W(S)
e e Ve o ¢

A2 /2 W(s) x

Since the function Ame $(A) is increasing this yields JEE

Thus the expression in (4.52) is always negative which by (4.51) %Howmm

T L (x,t)
w 0*Eg

(d8) s 2 log b+log(ZEyag¥ ) |

AM|nvmx-n Tz

The rest of the proof runs similarly to that of Theorem 4.2 from (4.20)

on.
oog



5. An optimal property of the repeated significance test

We consider the problem of testing the sign of the drift 6 of a Brownian
motion. As in the preceding section we let the costs depend on the
underlying parameter and choose it as "c8*", ¢>0. We show that a certain 3
simple Bayes rule, which defines a repeated significance test, is opti=- m
mal for the testing problem in a Bayes sense. The simple Bayes rules
stop sampling when the posterior mass of the hypothesis or the alterna-

tive is too small.

It is well known that also Wald's sequential probability ratio test is

defined by a simple Bayes rule and that it is optimal for simple hypo-
theses. We point out that the repeated significance test (RST) is the

natural counterpart to Wald's sequential probability ratio test (SPRT)
for testing composite hypotheses without an indifference zone.

The parameter sets of the hypothesis mo and the alternative mﬂ are
given by ®onﬁmA0v and by @;uﬁmVOV. We assume 0-1 loss, the usual loss
structure for testing. The observation costs are choosen as ¢8? where
c is a positive constant and 6 is the drift of the observed Brownian
motion. On the parameter space oO:oA we put the normal prior

G(d8)=¢ (VT (6-))/Td8 with ea<vu ﬂmﬂ mlmn\m. esmmmwmm&HmeOHm&mu

cision procedure (T,3§) consisting of a stopping rule T of the Brownian
motion and a terminal decision rule §, is given by

(o]
(5.1) p(T,8) = Hﬁmoﬁmo rejected Amvy+o®~m@evoﬁmmv

+ Hﬁwmﬁmd rejected Aavw+omum®evnA&mv.
o

Let Ox £ denote the posterior distribution-of 8, given that the process

! . g XFTL 1
(W(s),s) hhas reached (x,t). It is equal to ox\ﬁuza el n+nv. Here

N(p,0?) denotes the normal distribution with mean p and variance g?.

For X>0 the simple Bayes rule is defined as

T, = H:mﬁnvo_.ﬁw: OzAnV\nAoHv S (-},
i=0,1

131

where ¢ denotes the standard normal distribution function. It can also

be expressed as

. Wlt)+rpl
T, = inf (£>0] = 2 Al

The following result states that a simple Bayes rule is optimal for the
risk (5.1). The corresponding stopping boundary defines a repeated sig-

nificance test (u=0 is the usual case).

Theorem &,1: Let 0<c<w, Let X(c) denote the solution of the equation
9(A)/A=2c and let e*ueyﬁov. Let 8* denote the final decision rule which
rejects the hypothesis if and only <f W(T*)>-ru. Let |u|v/xsA(c). Then

the procedure (T*,8*) minimizes the Bayes risk (5.1).

Proof: Let Q=/ . P.0(VT(6-u))/Fd8. Then Pg ¢ (AW) 6 (/E(6-p)) /Ta0=
mzawv wAQovmamzv. A well-known argument yields that p(T,8*)<po(T,8) for
m<mu<~mﬁowvwsm time T. Let r(T,S) denote the part of the Bayes risk

(5.1) consisting of the error probabilities. Then

— W(T —
(5.2)  r{T,8%*) =/ min oerv.erHVQOHQQA-Hrwqwmmmhvmo .

1=0,1

On the other hand, the Bayes formula and Fubini's theorem yield

(5.3) [8*E,T¢(/r(8-1)) /Tas

-0

= [67 (f(T+r)aP,) ¢ (Vr (8-p)) YEAS- (ru?+1)

W(T)+ry 1

5- 2
Tir ! H+HUAQ®vVQO (ru?+1)

= {(T+r) ( [62N(

W(T) +rp, 2 1

T <o+ .H_+H.uQO!AHt.N+:

= f(T+r) ((

N .l
B CIEVES 1 LA S
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Thus (5.2) and (5.3) yield the representation of the Bayes risk for
(T,8%):

(5.4) oaa~a*vu%mﬁhmwmwmmmhvmm with £(A)=¢(-1) +cA?-cru? .

For 3>0, £ has a c:w@cm minimum at A{c) which is defined as the solution
of the equation ¢(A)/2Xi=c. Since |p|v/Tsi{c) the stopping time

e*uwsmﬁnvo_memmmmmhwyﬁovv satisfies Q{T*<w}=1. Thus

orr, %) =f (Il a5 2 £(a(e))=p (1%, 6%) .

ooa

The same type of argument can also be used for the one-sided problem.
We consider the risk

Q 0
(5.5)  p(T)= [Po{T<=}¢(/T8)/rdb+c[0%E T (/ro)2/Td8 ,
-0 [o]

with 0<c<2. For it the stopping time T*=inf{t>0| zhmv z ule)}, ulc)>0,

is optimal. This follows from the representation of the risk

e Wy s e AT
PIT) =fe(yme=—")d0  with o-%moeﬁxmmvwxmmm
and maxvnm$www + c(x? + mmﬁmwv~ where u(c) is the location of the

minimum of e.

To explain the relation between Wald's SPRT and the RST we consider the
problem of testing the sign of the drift Wm Brownian motion for simple
hypotheses -8 versus +6 with 6>0. We take loss and costs as above (0-1
loss and costs c6?) and restrict our considerations to a symmetric
prior Ouwaum+wa+m. Since here the costs are constant it is well known
from the theorem on page 197 of Wald's book that the SPRT minimizes the
Bayes risk

R

o

B SRR
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2l ; 2
0A6~mvlwﬁm:mﬁmo rejected (§8) }+c6?E__T)

1 ; 2
+MAmmﬁmd rejected (§)}+co moev.

Calculations similar to those as in the proof of Theorem 5.1 show that
the Bayes risk can be expressed as

-2x -2x
— . 1 -
p(T,6%) =g (6|W(T)[)a0 with g(x) = wuwnmm + ox Mumnum

. For x20, g(x) has a unigue minimum say at b(c). Let
(5.6) T*=inf{t>0|08|wW(t) |2b(c)}.

Then (T*,8*) minimizes the Bayes risk (5.1) with respect to the prior
G.

Now we consider the testing problem for composite hypotheses mo"®Ao

versus mA”ovo. In ignorance of the parameter |6| we estimate it for -

instance by @ﬁ = HM%WPH . Then

Ww(t)?
t+r '

@w_zﬁﬁv. =

which together with (5.6) shows that the RST is an adapted version of
Wald's SPRT.

Finally we explain the connections between our and Chernoff's approach
which uses free boundary techniques. Let f£()X)=¢(-))+cA?" denote the loss
function which for u=0 appears in formula (5.4). The minimal posterior
Ax~nva W(T)
+r
where the infimum is taken over all stopping times T of the process
(W(v),v) starting at {(x,t). Let u(i,s)=0(x,t) where A=x/v/t+r and

)

risk at the space-time point (x,t) is given by U(x,t)=inf E

s=log(t+r). Since the infimum also includes the constant stopping time
enmn. it follows that usf. By using similar arguments as Chernoff (1972)
one can show that u satisfies the equations:
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1,42 _
(5.7) mmc+MAw yc+ywycv =0

on the set T={{(X,s)|ulr,s)<f(\)},

u=f on ﬁo\

w»SHWXm on the boundary 3T.

These equations establish a free boundary problem corresponding to the
original stopping problem. It has a very simple solution since the loss
function f does not depend on time. Its solution is given by
:~y~mvumAyov on ﬂnmAy\mv_y~Aymv where >0vo denotes the location of the
minimum of £ on IR_. It is given by the solution of the implicit equa-

tion ¢(A)/A=2c.

There is an other aspect of this problem. As is well known, the optimal
stopping rule for a stopping problem of a Markov-process is given by

the first entrance time of the process to the set where the loss function
u coincides with the largest subharmonic function below u. For the dif-
fusion process under consideration (its generator is equal to

1 1 . . . .
=5 mw+M>w»v this function is given by Cumﬁynvéﬂ+mgmo.

The free boundary approach described above will prove as really useful
for the related problem of termination of the observations after finite
time. For this more complicated problem one can apply the free boundary
techniques developed by Chernoff and others. Nevertheless our second
viewpoint helps to see what happens in this case qualitatively. Since
Lf>0 in all points A#0, one can conclude that the optimal stopping
boundary tends to zero when one approaches the finite termination point.

i

¥
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Martingale, 19, 33, 35, 40, 96, 115, 127
Maximum-likelihood estimator, 93, 94

Method of images, 3, 17, 31, 32, 38, 42, 96

-, boundaries, 18, 22

Method of mixture of likelihood functions, 3, 33, 38, 96
-, application, 114-118

-, boundaries, 34

-, equivalence of both methods, 38

Mixture of likelihood functions, 35

Normal distribution function, 14
Normal prior, 13
Numerical accuracy, 68, 69

o(c)~approximation, 13, 120

Operating characteristics, 8, 66

Optimal stopping problem, 107, 108

Optimal stopping rule (region), 10, 12, 101, 106, 107, 111
Optional stopping theorem, 35, 41, 96

Overshoot, 2, 93, 96

Parabolic boundaries, 1, 2, 4, 6, 101, 107
Posterior distribution, 14, 101, 109, 130

Posterior expectation, 26

Posterior (loss) risk, 107, 110, 112, 113, 115, 133

Radon-Nikodym derivative, 35 (see also likelihood function)
Regular point, 21

Repeated significance test, 8, 14, 130, 131

Representation theorem for positive harmonic functions, 31, 40

Saddlepoint approximation, 8, 14, 92-95

Sampling cost, 100, 130

Second order approximation, 7, 68, 76, 88

Sequential (probability) likelihood ratio test, 2, 14, 130
Siegmund's result on the repeated significance test, 6, 63, 64
Simple Bayes rule, 9, 13, 14, 102, 109, 130, 131

Simple hypotheses, 12

Space-time process, 111

Stochastic differential equation, 111

Strassen's result on the tangent approximation, S
Strassen's law of the iterated logarithm, 51

Subharmonic function, 134

Tail probabilities for lower class functions, 78
Tangent approximation, 3, 5, 9, 42, 58-61, 77, 89, 92-96
Testing the sign of a drift, 13, 130, 132



Test of power one,

Time inversion,

4,

1,

39

2,

10, 100,

142

101

Uniformity of the tangent approximation over time, 8, 46, 60~63, 88
-, over drift, 66,
Upper class function,

Wald's lemma, 12

86

Wald's test, 130-133

Wiener germ, 93

3,

78-80,

87
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