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ABSTRACT It is shown that the repeated significance test
is a Bayes test for testing sequentially the sign of the drift of a
Brownian motion. Its relation to Wald’s sequential probability
ratio test is studied.

The repeated significance test (RST)

Let X;, X,, ... be independent, identically distributed ran-
dom variables, and let S, = X; + ... + X,. Assume that the
mean value # = F X, is unknown and that the variance Var
X; = 0% < » is known. In order to make inferences about
the size and the sign of the unknown value 6, it is common to
use the critical region |S,,|/(n)? = a to reject the null hypoth-
esis that 8 = 0, when the sample size n is fixed in advance.
To accelerate the detection of a certain effect, it seems plau-
sible to apply this significance test repeatedly, which is just
the RST. More precisely, the RST stops at the first » for
which |S,]/(n)** Z a and decides that sgn 6 = sgn S,,.

For the following two testing problems, it seems natural to
apply the RST. The first is testing Hy:0 = 0 versus Hy:0 # 0;
the other is testing Hy:6 < 0 versus H;:8 > 0. The second
one will be discussed below. For the first problem, Robbins
(1) observed that the RST stops almost surely even when 6 =
0, by the law of the iterated logarithm.

Procedures without this feature but with operating charac-
teristics similar to the RST are the tests of power one. For
more information on this topic, see refs. 2 and 3.

The operating characteristics of the RST were studied by
McPherson and Armitage (4) using a Monte Carlo method,
and by Siegmund (5) and others, theoretically; they derived
refined large deviation results.

The RST is a natural procedure for medical statistics. One
can use it, for instance, as a breakoff rule for follow-up stud-
ies of survival data. For further discussions of this, see ref.
6.

Here we shall study the optimality properties of the RST,
about which nothing is known so far. I shall discuss this top-
ic with the following motivating question in mind: is there a
natural counterpart to Wald’s sequential probability ratio
test (SPRT) for testing composite hypotheses without an in-
difference zone that has optimality properties similar to the
SPRT? To explain the background of this question, I give a
short review of the relevant optimality results of the theory.

Optimality in sequential testing

Let {Py; 6 € R} denote a set of probability measures. Let 6,
C (—, 0) and ©; C (0, ). Let X;, X5, ... be independent,
identically distributed observations from an unknown Py, 6
€ 6y U 6;. We consider the hypothesis testing problem Hy: 6
€ Oy versus Hy:0 € O;, with 0-1 loss and cost ¢ > 0 per
observation. Let G(d6) denote a prior on 6y, U 6;. The
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Bayes risk for a decision procedure (7, 8), consisting of a
stopping time, T, of X1, X5, ... and a terminal decision rule,
8, is given by

R(T, o) = L [Po{H, rejected (8)} + cE¢T1G(d6)

+ J; [Po{H; rejected (8)} + cE,TIG(d6). [1]

The objective is to find a decision procedure (T*, §*) with
minimal Bayes risk.

This optimality problem reduces to an optimal stopping
problem by the following consideration. We assume that §,
is a sufficient statistic for the first n observations. Let G, ,
denote the posterior distribution of 8 with respect to G, given
that §,, = x. Let T be an arbitrary stopping time. Let 8* de-
note the terminal decision rule (after stopping at T) which
rejects the hypothesis Hy if and only if Gs, 1(0g) <
Gs, r(01). It is well known that p(T, &) = p(T, ). Since

p(T, 6*) = fh(s'ﬁ Ddé’

with i(x, n) = G, ,(0p) N\ G, 4(01) + cn and Q = [P,G(dH),
one has only to find the optimal stopping rule.

Two types of optimality results are known: (i) For the case
that there is an indifference zone in the parameter space
(i.e., a positive distance between Oy and ©,), it is known that
certain simple Bayes rules are optimal or almost optimal for
the Bayes risk (Eq. 1) (7-10). The simple Bayes rules stop
sampling when the posterior probability of ©, or ©; is too
small. The SPRT is exactly optimal. (if) For the case that
there is no indifference zone in the parameter space, the op-
timal stopping rules are not simple Bayes rules (11-13).

In the following section, I show that if we let the cost ¢
depend on the parameter 0 in a natural way, then a simple
Bayes rule is optimal for the testing problem without an in-
difference zone. For related results about tests of power one
see ref. 14.

The RST and optimality

For simplicity, consider the continuous time problem of test-
ing the sign of the drift 6 of Brownian motion W(¢). The pa-
rameter sets of Hyand H; are given by Oy = {# < 0}and 9, =
{6 > 0}. The observation cost is taken to be c#”, where c is a
positive constant. On the parameter space O, U ©; we put
the normal prior G(d6) = ¢[r'%(6 — w)] r?de with ¢(y) =
(2m)~12¢-¥"2, The Bayes risk for a decision procedure (7, 8)
is given by

R(T, &) = f [Po{H, rejected (8)} + c6°EoTIG(d6)

Abbreviations: RST, repeated significance test; SPRT, sequential
probability ratio test.
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+ fo [Po{H, rejected (8)} + cO%E,T1G(d6). (2]

The objective is to find a decision procedure (T*, &*) that
minimizes R.

The assumption about the observation cost is somewhat
unusual, but its meaning becomes apparent from the follow-
ing consideration. Let us consider the two testing problems
(i) Hy:6 = 0 versus H{:0 = 6, and (ii) Hy:8 = 0 versus Hy:60 =
&, with 6, >0 (i =1, 2). Let ; (i = 1, 2) denote the sample
sizes. Then the level-a Neyman-Pearson tests for both prob-
lems have the same power if and only if 87, = 63t,. [This
follows from the form of the power function of a Neyman—
Pearson test of level a: ®(—c, + 6:Y?).] Thus, the factor ¢°
standardizes the sample sizes in such a way that the testing
problems are of equal difficuity.

There exists also some nonmathematical motivation aris-
ing from medical statistics for letting the cost of an observa-
tion depend on the unknown parameter. In a medical trial,
the “cost” of an observation is more an ethical than an eco-
nomic quantity, a measure of the regret for giving a subject
an inferior treatment. There it seems quite reasonable to for-
mulate the cost as a function of the parameter, since the re-
gret for giving a subject a slightly inferior treatment will be
less than that for giving a markedly inferior one. For refer-
ences to literature relating to this, see ref. 3.

Let G,, denote the posterior distribution of 6, given that
the process [W(s), s] has reached (x, 1); G, , = N(x + ru/t +
r, 1/t + r), where N(p, o) denotes the normal distribution
with mean p and variance ¢?. For A > 0, the simple Bayes
rule is defined as

T)\ = inf{t > 0| Il;lél'll Gw(,),,(e,') = CI)(—)\)},

where @ denotes the standard normal distribution function.
It can also be expressed as

. W) + r
T, = 1nf{z>0||(—t(—i—7)1/—2p“' = AL

The following result states that a simple Bayes rule is opti-
mal for the risk (2). The corresponding stopping boundary
defines a repeated significance test (u = 0 is the usual case).
To my knowledge, this is the only exact optimality result in
sequential testing besides those about the SPRT.

THEOREM: Let 0 < ¢ < %, Let M) denote the solution of
the equation ¢(\)/\ = 2¢, and let

[W(0) + ru|

* 7 .
T inf{t > O C+ 7

= M)}

Let 8* = lpw(rey>—ruy and ||t = N(c). Then the procedure
(T*, 8*) minimizes the Bayes risk (Eq. 2).

Proof: Let O = [*. Py ¢[r'*(8 — w)] r"’d6. Then the
Bayes formula P (dW)$[r'* (0 — wlr'?d0 = Gw (d6)
O(dW) holds. A well-known argument yields that R(T, 6*) =
R(T, &) for every stopping time T. Let (T, 8) denote the part
of the Bayes risk (2) consisting of the error probabilities.
Then

KT, &%) = J' f{léfll Gwr) 1(0)d0

W(T) +
- | ‘P(—————' s ')a@. Bl
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On the other hand, the Bayes formula and Fubini’s theorem
yield

r PE, T (6 — wlrt?de

= JX BZ[J'(T + r)dPo}b[r”z(O — wlr?de — (rp? + 1)

= f (T + r)(J eZN[KV(;—):{ﬁ, —T—i—r](dt))>d§ ~(rur+ 1)
_ W(T) + ru |? 1 = 2
—J(T+r)<[ T+r ] +T~|—r)dQ (rp” + 1)

_ (WD) + ruP
= | =5 d0 - e [4]

Thus, Egs. 3 and 4 yield the representation of the Bayes risk
for (T, 6*):

\W(T) + ru|\ —
T 2 s

p(T, &%) = Jf(

with f(\) = ®(—\) + cA? — crp?. For A > 0, f has a unique
minimum at A(¢) which is defined as the solution of the equa-
tion ¢(\)/2\ = c. Since |u/r'? = \(c), the stopping time T* =
inf{t > 0:|W(0) + rul/(z + 1)V* = M)} satisfies Q{T* < =} =
1. Thus,

|W(T) + ry

(T + N2 )dé z f(\c) = p(T*, &),

p(T, &) = ff(

which completes the proof.

To explain the relation between Wald’s SPRT and the
RST, we consider the problem of testing the sign of the drift
of Brownian motion for the simple hypotheses —6 versus
+6, with 8 > 0. We take loss and cost as above (0-1 loss and
cost ¢6?%) and restrict our considerations to a symmetric pri-
or, G =1/26_4 + 1/28.4, where 8, denotes the point mass at
a. Because here the cost is constant, it is well known from
the theorem on page 197 of ref. 15 that the SPRT minimizes
the Bayes risk (Eq. 1) with cost c8? and with respect to the
prior G. Calculations similar to those in the proof above
show that the Bayes risk can be expressed as R(T, §%) =
Je(8lW(D)dQ, with g(x) = [e"*/(1 + e )] + cx(1 —
e-2)/(1 + e">)and Q = 3P_4 + 3 Py. Forx = 0, g(x) has a
unique minimum, say at b(c¢). Let

T* = inf{t > 0:6|W(1)| = b(c)}. 6]

Then (T*, %) minimizes the Bayes risk (Eq. 1) with respect
to the prior G.

Now we consider the testing problem for composite
hypotheses Hy:0 < 0 versus Hy:6 > 0. In ignorance of the
parameter ||, we estimate it for instance by |6 = [W(9)|/(z +
r). Then

W(t)?

10t||W(t)| = r+

which, together with Eq. 6, shows that the RST is an adapted
version of Wald’s SPRT.

The related cases of normal random walks with known and
unknown variance can be treated similarly. Since for those
cases the overshoot has to be taken into account, exact re-
sults no longer hold. The details will be discussed elsewhere.
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