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Abstract. The aim of this article is to provide a systematic analysis of
the conditions such that Fourier transform valuation formulas are valid
in a general framework; i.e. when the option has an arbitrary payoff
function and depends on the path of the asset price process. An interplay
between the conditions on the payoff function and the process arises
naturally. We also extend these results to the multi-dimensional case,
and discuss the calculation of Greeks by Fourier transform methods. As
an application, we price options on the minimum of two assets in Lévy
and stochastic volatility models.

1. Introduction

Since the seminal work of Carr and Madan (1999) and Raible (2000)
on the valuation of options with Fourier transform methods, there have
been several articles dealing with extensions and analysis of these valuation
formulas. This literature focuses on the extension of the method to other
situations, e.g. the pricing of exotic or multi-asset derivatives, or on the
analysis of the discretization error of the fast Fourier transform.

The article of Borovkov and Novikov (2002) deals with the application of
Fourier transform valuation formulas for the pricing of some exotic options,
while Hubalek et al. (2006) use similar techniques for hedging purposes. Lee
(2004) provides an analysis of the discretization error in the fast Fourier
transform, while Lord (2008) extends the method to the pricing of options
with early exercise features. Recently, Hubalek and Kallsen (2005), Biagini
et al. (2008) and Hurd and Zhou (2009) extend the method to accommo-
date options on several assets, considering basket options, spread options
and catastrophe insurance derivatives. Dufresne et al. (2009) also consider
the valuation of payoffs arising in insurance mathematics by Fourier meth-
ods. In addition, the books of Cont and Tankov (2003), Boyarchenko and
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Levendorskǐı (2002) and Schoutens (2003) are also discussing Fourier trans-
form methods for option pricing. Let us point out that all these results are
intimately related to Parseval’s formula, cf. Katznelson (2004, VI.2.2).

The aim of our article is to provide a systematic analysis of the condi-
tions required for the existence of Fourier transform valuation formulas in
a general framework: i.e. when the underlying variable can depend on the
path of the price process and the payoff function can be discontinuous. Such
an analysis seems to be missing in the literature.

In their work, Carr and Madan (1999), Raible (2000) and most others are
usually imposing a continuity assumption, either on the payoff function or
on the random variable (i.e. existence of a Lebesgue density). However, when
considering e.g. a one-touch option on a Lévy-driven asset, both assumptions
fail: the payoff function is clearly discontinuous, while a priori not much is
known about the existence of a density for the distribution of the supremum
of a Lévy process. Analogous situations can also arise in higher dimensions.

The key idea in Fourier transform methods for option pricing lies in the
separation of the underlying process and the payoff function. We derive con-
ditions on the moment generating function of the underlying random vari-
able and the Fourier transform of the payoff function such that Fourier based
valuation formulas hold true in one and several dimensions. An interesting
interplay between the continuity conditions imposed on the payoff function
and the random variable arises naturally. We also derive a result that allows
to easily verify the conditions on the payoff function (cf. Lemma 2.5).

The results of our analysis can be briefly summarized as follows: for gen-
eral continuous payoff functions or for variables, whose distribution has a
Lebesgue density, the valuation formulas using Fourier transforms are valid
as Lebesgue integrals, in one and several dimensions. When the payoff func-
tion is discontinuous and the random variable might not possess a Lebesgue
density then, in dimension one, we get pointwise convergence of the val-
uation formulas under additional assumptions, that are typically satisfied.
In several dimensions pointwise convergence fails, but we can deduce the
valuation function as an L2-limit.

In addition, the structure of the valuation formulas allows us to derive
easily formulas for the sensitivities of the option price with respect to the
various parameters; otherwise, Malliavin calculus techniques or cubature for-
mulas have to be employed, cf. e.g. Fournié et al. (1999), Teichmann (2006)
and Kohatsu-Higa and Yasuda (2009). We discuss results regarding the sen-
sitivities with respect to the initial value, i.e. the delta and the gamma.
It turns out that the trade-off between continuity conditions on the payoff
function and the random variable established for the valuation formulas, be-
comes now a trade-off between integrability and smoothness conditions for
the calculation of the sensitivities.

The valuation formulas allow to compute prices of European options very
fast, hence they allow the efficient calibration of the model to market data
for a large variety of driving processes, such as Lévy processes and affine
stochastic volatility models. Indeed, for Lévy and affine processes the mo-
ment generating function is usually known explicitly, hence these models are
tailor-made for Fourier transform pricing formulas.
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We also mention here that the Fourier transform based approach can be
applied for the efficient computation of prices in other frameworks as well.
An important area is the valuation of interest rate derivatives in Lévy driven
models. Lévy term structure models were developed in a series of papers in
the last ten years; this development is surveyed in Eberlein and Kluge (2007).
For the Fourier based formulas we mention the two papers by Eberlein and
Kluge (2006a, 2006b), where caps, floors, and swaptions as well as interest
rate digital and range digital options are discussed; furthermore Eberlein and
Koval (2006), where cross currency derivatives are considered and Eberlein,
Kluge, and Schönbucher (2006), where pricing formulas for credit default
swaptions are derived. Moreover, in the framework of the ‘affine LIBOR’
model (cf. Keller-Ressel et al. 2009) caps and swaptions can be easily priced
by Fourier based methods.

This paper is organized as follows: in Section 2 we present valuation for-
mulas in the single asset case, and in Section 3 we deal with the valuation
of options on several assets. In Section 4 we discuss sensitivities. In Section
5 we review examples of commonly used payoff functions, in dimension one
and in multiple dimensions. In Section 6 we review Lévy and affine pro-
cesses. Finally, in Section 7 we provide numerical examples for the valuation
of options on several assets in Lévy and affine stochastic volatility models.

2. Option valuation: single asset

1. Let B = (Ω,F ,F, P ) be a stochastic basis in the sense of Jacod and
Shiryaev (2003, I.1.3), where F = FT and F = (Ft)0≤t≤T . We model the
price process of a financial asset, e.g. a stock or an FX rate, as an exponential
semimartingale S = (St)0≤t≤T , i.e. a stochastic process with representation

St = S0eHt , 0 ≤ t ≤ T (2.1)

(shortly: S = S0eH), whereH = (Ht)0≤t≤T is a semimartingale withH0 = 0.
Every semimartingale H = (Ht)0≤t≤T admits a canonical representation

H = B +Hc + h(x) ∗ (µ− ν) + (x− h(x)) ∗ µ, (2.2)

where h = h(x) is a truncation function, B = (Bt)0≤t≤T is a predictable
process of bounded variation, Hc = (Hc

t )0≤t≤T is the continuous martingale
part of H with predictable quadratic characteristic 〈Hc〉 = C, and ν is
the predictable compensator of the random measure of jumps µ of H. Here
W ∗ µ denotes the integral process of W with respect to µ, and W ∗ (µ −
ν) denotes the stochastic integral of W with respect to the compensated
random measure µ− ν; cf. Jacod and Shiryaev (2003, Chapter II).

Let M(P ), resp. Mloc(P ), denote the class of all martingales, resp. local
martingales, on the given stochastic basis B.

Subject to the assumption that the process 1{x>1}ex ∗ ν has bounded
variation, we can deduce the martingale condition

S = S0eH ∈Mloc(P ) ⇔ B +
C

2
+ (ex − 1− h(x)) ∗ ν = 0; (2.3)

cf. Eberlein et al. (2008) for details. The martingale condition can also be
expressed in terms of the cumulant process K associated to (B,C, ν), i.e.
K(1) = 0; for the cumulant process see Jacod and Shiryaev (2003).
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Throughout this work, we assume that P is an (equivalent) martingale
measure for the asset S and the martingale condition is in force; moreover,
for simplicity we assume that the interest rate and dividend yield are zero. By
no-arbitrage theory the price of an option on S is calculated as its discounted
expected payoff.

2. Let Y = (Yt)0≤t≤T be a stochastic process on the given basis. We denote
by Y = (Y t)0≤t≤T and Y = (Y t)0≤t≤T the supremum and the infimum
processes of Y respectively, i.e.

Y t = sup
0≤u≤t

Yu and Y t = inf
0≤u≤t

Yu.

Notice that since the exponential function is monotonically increasing,
the supremum processes of S and H are related via

ST = sup
0≤t≤T

(
S0eHt

)
= S0esup0≤t≤T Ht = S0eHT . (2.4)

Similarly, the infimum processes of S and H are related via

ST = S0eHT .

3. The aim of this work is to tackle the problem of efficient valuation for
plain vanilla options, such as European call and put options, as well as for
exotic path-dependent options, such as lookback and one-touch options, in a
unified framework. Therefore, we will analyze and prove valuation formulas
for options on an asset S = S0eH with a payoff at maturity T that may
depend on the whole path of S up to time T . These results, together with
analyticity conditions on the Wiener–Hopf factors, will be used in the com-
panion paper (Eberlein, Glau, and Papapantoleon 2009) for the pricing of
one-touch and lookback options in Lévy models.

The following example of a fixed strike lookback option will serve as a
guideline for our methodology; note that using (2.4) it can be re-written as(

ST −K
)+ =

(
S0eHT −K

)+
. (2.5)

In order to incorporate both plain vanilla options and exotic options in
a single framework we separate the payoff function from the underlying
process, where:
(a) the underlying process can be the log-asset price process or the supre-

mum/infimum of the log-asset price process or an average of the log-asset
price process. This process will always be denoted by X (i.e. X = H or
X = H or X = H, etc.);

(b) the payoff function is an arbitrary function f : R → R+, for example
f(x) = (ex −K)+ or f(x) = 1{ex>B}, for K,B ∈ R+.

Clearly, we regard options as dependent on the underlying process X, i.e.
on (some functional of) the logarithm of the asset price process S. The main
advantage is that the characteristic function of X is easier to handle than
that of (some functional of) S; for example, for a Lévy process H = X it is
already known in advance.

Moreover, we consider exactly those options where we can incorporate the
path-dependence of the option payoff into the underlying process X. Euro-
pean vanilla options are a trivial example, as there is no path-dependence; a
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non-trivial, example are options on the supremum, see again (2.4) and (2.5).
Other examples are the geometric Asian option and forward-start options.

In addition, we will assume that the initial value of the underlying process
X is zero; this is the case in all natural examples in mathematical finance.
The initial value S0 of the asset price process S plays a particular role,
because it is convenient to consider the option price as a function of it, or
more specifically as a function of s = − logS0.

Hence, we express a general payoff as

Φ
(
S0eHt , 0 ≤ t ≤ T

)
= f(XT − s) , (2.6)

where f is a payoff function and X is the underlying process, i.e. an adapted
process, possibly depending on the full history of H, with

Xt := Ψ(Hs, 0 ≤ s ≤ t) for t ∈ [0, T ],

and Ψ a measurable functional. Therefore, the time-0 price of the option is
provided by the (discounted) expected payoff, i.e.

Vf (X; s) = E
[
Φ
(
St, 0 ≤ t ≤ T

)]
= E

[
f(XT − s)

]
. (2.7)

Note that we consider ‘European style’ options, in the sense that the
holder or writer do not have the right to exercise or terminate the option
before maturity.

Remark 2.1. In case the interest rate r and the dividend yield δ are non-
zero, then the martingale condition (2.3) reads

(δ − r)t+Bt +
Ct

2
+ (ex − 1− h(x)) ∗ νt = 0

for all t, and the option price is given by Vf (X; s) = e−rTE
[
f(XT − s)

]
.

4. The first result focuses on options with continuous payoff functions, such
as European plain vanilla options, but also lookback options.

Let PXT
denote the law, MXT

the moment generating function and ϕXT

the (extended) characteristic function of the random variable XT ; that is

MXT
(u) = E

[
euXT

]
= ϕXT

(−iu),

for suitable u ∈ C. For any payoff function f let g denote the dampened
payoff function, defined via

g(x) = e−Rxf(x) (2.8)

for some R ∈ R. Let ĝ denote the (extended) Fourier transform of a function
g, and L1

bc(R) the space of bounded, continuous functions in L1(R).
In order to derive a valuation formula for an option with an arbitrary

continuous payoff function f , we will impose the following conditions.
(C1): Assume that g ∈ L1

bc(R).
(C2): Assume that MXT

(R) exists.
(C3): Assume that ĝ ∈ L1(R).

Theorem 2.2. If the asset price process is modeled as an exponential semi-
martingale process according to (2.1)–(2.3) and conditions (C1)–(C3) are in
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force, then the time-0 price function is given by

Vf (X; s) =
e−Rs

2π

∫
R

e−iusϕXT
(u− iR)f̂(iR− u)du. (2.9)

Proof. Using (2.7) and (2.8) we have

Vf (X; s) =
∫
Ω

f(XT − s)dP = e−Rs
∫
R

eRxg(x− s)PXT
(dx). (2.10)

By assumption (C1), g ∈ L1(R) and the Fourier transform of g,

ĝ(u) =
∫
R

eiuxg(x)dx,

is well defined for every u ∈ R and is also continuous and bounded. Ad-
ditionally, using assumption (C3) we immediately have that ĝ ∈ L1

bc(R).
Therefore, using the Inversion Theorem (cf. Deitmar 2004, Theorem 3.4.4),
ĝ can be inverted and g can be represented, for all x ∈ R, as

g(x) =
1
2π

∫
R

e−ixuĝ(u)du. (2.11)

Now, returning to the valuation problem (2.10) we get that

Vf (X; s) = e−Rs
∫
R

eRx

(
1
2π

∫
R

e−i(x−s)uĝ(u)du

)
PXT

(dx)

=
e−Rs

2π

∫
R

eius

(∫
R

ei(−u−iR)xPXT
(dx)

)
ĝ(u)du

=
e−Rs

2π

∫
R

eiusϕXT
(−u− iR)f̂(u+ iR)du, (2.12)

where for the second equality we have applied Fubini’s theorem; moreover,
for the last equality we have

ĝ(u) =
∫
R

eiuxe−Rxf(x)dx = f̂(u+ iR).

Finally, the application of Fubini’s theorem is justified since∫
R

∫
R

eRx|e−iu(x−s)||ĝ(u)|duPXT
(dx) ≤

∫
R

eRx

(∫
R

|ĝ(u)|du
)
PXT

(dx)

≤ KMXT
(R) <∞,

where we have used again that ĝ ∈ L1(R), and the finiteness of MXT
(R) is

given by Assumption (C2). �

Remark 2.3. We could also replace assumptions (C1) and (C3) with the
following conditions

(C1′): g ∈ L1(R) and (C3′): ̂eRxPXT
∈ L1(R).
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Condition (C3′) yields that eRxPXT
possesses a continuous bounded Lebesgue

density, say ρ; cf. Breiman (1968, Theorem 8.39). Then, we can identify ρ,
instead of g, with the inverse of its Fourier transform and the proof goes
through with the obvious modifications. This statement is almost identical
to Theorem 3.2 in Raible (2000).

Remark 2.4 (Numerical evaluation). The option price represented as an
integral of the form (2.9) can be evaluated numerically very fast. The fol-
lowing simple observation can speed up the computation of this expression
even further: notice that for a fixed maturity T , the characteristic function
– which is the computationally expensive part – should only be evaluated
once for all different strikes or initial values. The gain in computational
time will be significant when considering models where the characteristic
function is not known in closed form; e.g. in affine models where one might
need to solve a Riccati equation to obtain the characteristic function. This
observation has been termed ‘caching’ by some authors (cf. Kilin 2007)

5. Apart from (C3), the prerequisites of Theorem 2.2 are quite easy to check
in specific cases. In general, it is also an interesting question to know when
the Fourier transform of an integrable function is integrable. The problem is
well understood for smooth (C2 or C∞) functions, see e.g. Deitmar (2004),
but the functions we are dealing with are typically not smooth. Hence, we
will provide below an easy-to-check condition for a non-smooth function to
have an integrable Fourier transform.

Let us consider the Sobolev space H1(R), with

H1(R) =
{
g ∈ L2(R)

∣∣∣ ∂g exists and ∂g ∈ L2(R)
}
,

where ∂g denotes the weak derivative of a function g; see e.g. Sauvigny
(2006). Let g ∈ H1(R), then from Proposition 5.2.1 in Zimmer (1990) we
get that

∂̂g(u) = −iuĝ(u) (2.13)

and ĝ, ∂̂g ∈ L2(R).

Lemma 2.5. Let g ∈ H1(R), then ĝ ∈ L1(R).

Proof. Using the above results, we have that

∞ >

∫
R

(∣∣ĝ(u)∣∣2 +
∣∣∂̂g(u)∣∣2)du =

∫
R

∣∣ĝ(u)∣∣2(1 + |u|2
)
du. (2.14)

Now, by the Hölder inequality, using (1 + |u|)2 ≤ 3(1 + |u|2) and (2.14), we
get that∫

R

∣∣ĝ(u)∣∣du =
∫
R

∣∣ĝ(u)∣∣1 + |u|
1 + |u|

du

≤
(∫

R

∣∣ĝ(u)∣∣2(1 + |u|)2du
) 1

2
(∫

R

1
(1 + |u|)2

du
) 1

2

<∞

and the result is proved. �
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Remark 2.6. A similar statement can be proved for functions in the Sobolev-
Slobodeckij space Hs(R), for s > 1

2 .

6. Next, we deal with the valuation formula for options whose payoff func-
tion can be discontinuous, while at the same time the measure PXT

does not
necessarily possess a Lebesgue density. Such a situation arises typically when
pricing one-touch options in purely discontinuous Lévy models. Hence, we
need to impose different conditions, and we derive the valuation formula as
a pointwise limit by generalizing the proof of Theorem 3.2 in Raible (2000).
A similar result (Theorem 1 in Dufresne et al. 2009) has been pointed out
to us by one of the referees.

In this and the following sections we will make use of the following nota-
tion; we define the function ḡ and the measure % as follows

ḡ(x) := g(−x) and %(dx) := eRxPXT
(dx).

Moreover %(R) =
∫
%(dx), while ḡ∗% denotes the convolution of the function

ḡ with the measure %. In this case we will use the following assumptions.
(D1): Assume that g ∈ L1(R).
(D2): Assume that MXT

(R) exists (⇐⇒ %(R) <∞).

Theorem 2.7. Let the asset price process be modeled as an exponential
semimartingale process according to (2.1)–(2.3) and conditions (D1)–(D2)
be in force. The time-0 price function is given by

Vf (X; s) = lim
A→∞

e−Rs

2π

A∫
−A

e−iusϕXT
(u− iR)f̂(iR− u)du, (2.15)

at the point s ∈ R, if Vf (X; ·) is of bounded variation in a neighborhood of
s, and Vf (X; ·) is continuous at s.

Remark 2.8. In Section 5 we will relate the conditions on the valuation
function Vf to properties of the measure PXT

for specific (dampened) payoff
functions g. These properties are easily checkable – and typically satisfied –
in many models.

Proof. Starting from (2.10), we can represent the option price function as a
convolution of ḡ and % as follows

Vf (X; s) = e−Rs
∫
R

eRxg(x− s)PXT
(dx) = e−Rs

∫
R

ḡ(s − x)%(dx)

= e−Rs ḡ ∗ %(s). (2.16)

Using that g ∈ L1(R), hence also ḡ ∈ L1(R), and %(R) < ∞ we get that
ḡ ∗ % ∈ L1(R), since

‖ḡ ∗ %‖L1(R) ≤ %(R) ‖ḡ‖L1(R) <∞; (2.17)

compare with Young’s inequality, cf. Katznelson (2004, IV.1.6). Therefore,
the Fourier transform of the convolution is well defined and we can deduce
that, for all u ∈ R, ̂̄g ∗ %(u) = ̂̄g(u) · %̂(u);
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compare with Theorem 2.1.1 in Bochner (1955).
By (2.17) we can apply the inversion theorem for the Fourier transform,

cf. Satz 4.2.1 in Doetsch (1950), and get

1
2
(
ḡ ∗ %(s+) + ḡ ∗ %(s−)

)
=

1
2π

lim
A→∞

A∫
−A

e−ius %̂(u)̂̄g(u)du, (2.18)

if there exists a neighborhood of s where s 7→ ḡ∗%(s) is of bounded variation.
We proceed as follows: first we show that the function s 7→ ḡ ∗ %(s) has

bounded variation; then we show that this map is also continuous, which
yields that the left hand side of (2.18) equals ḡ ∗ %(s).

For that purpose, we re-write (2.16) as

ḡ ∗ %(s) = eRs Vf (X; s);

then, ḡ ∗ % is of bounded variation on a compact interval [a, b] if and only if
Vf (X; ·) ∈ BV ([a, b]); this holds because the map s 7→ eRs is of bounded vari-
ation on any bounded interval on R, and the fact that the space BV ([a, b])
forms an algebra; cf. Satz 91.3 in Heuser (1993). Moreover, s is a continuity
point of ḡ ∗ % if and only if Vf (X; ·) is continuous at s .

In addition, we have that

̂̄g(u) =
∫
R

e−iuxe−Rxf(x)dx = f̂(iR− u) (2.19)

and

%̂(u) =
∫
R

eiuxeRxPXT
(dx) = ϕXT

(u− iR). (2.20)

Hence, (2.18) together with (2.19), (2.20) and the considerations regarding
the continuity and bounded variation properties of the value function yield
the required result. �

3. Option valuation: multiple assets

1. We would like to establish valuation formulas for options that depend on
several assets or on multiple functionals of one asset. Typical examples of
options on several assets are basket options and options on the minimum or
maximum of several assets, with payoff

(S1
T ∧ · · · ∧ Sd

T −K)+,

where x ∧ y = min{x, y}. Typical examples of options on functionals of a
single asset are barrier options, with payoff

(ST −K)+1{ST >B},

and slide-in or corridor options, with payoff

(ST −K)+
N∑

i=1

1{L<STi
<H},

at maturity T , where 0 = T0 < T1 < · · · < TN = T .
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In the previous section we proved that the valuation formulas for a single
underlying is still valid – at least as a pointwise limit, under reasonable
additional assumptions – even if the underlying distribution does not possess
a Lebesgue density and the payoff is discontinuous.

In the present section we will generalize the valuation formulas to the case
of several underlyings. Once again, if either the joint distribution possesses
a Lebesgue density or the payoff function is continuous, the formula is valid
as a Lebesgue integral. In case both assumptions fail, we will encounter
situations that are apparently of harmless nature, but where the pointwise
convergence will fail. In this case we will establish the valuation formulas
as an L2-limit; however, with respect to numerical evaluation, a stronger
notion of convergence would be preferable.

Analogously to the single asset case we assume that the asset prices evolve
as exponential semimartingales. Let the driving process be an Rd-valued
semimartingale H = (H1, . . . ,Hd)> and S = (S1, . . . , Sd)> be the vector
of asset price processes; then each component S i of S is modeled as an
exponential semimartingale, i.e.

S i
t = S i

0 expH i
t , 0 ≤ t ≤ T , 1 ≤ i ≤ d, (3.1)

where H i is an R-valued semimartingale with canonical representation

H i = H i
0 +Bi +H i ,c + hi (x) ∗ (µ− ν) + (xi − hi (x)) ∗ µ, (3.2)

with hi (x) = e>i h(x). The martingale condition can be given as in eq. (3.3)
in Eberlein, Papapantoleon, and Shiryaev (2009).

2. In the sequel, we will price options with payoff f(XT − s) at maturity T ,
where XT is an FT -measurable Rd-valued random variable, possibly depen-
dent of the history of the d driving processes, i.e.

XT = Ψ
(
Ht, 0 ≤ t ≤ T

)
,

where Ψ is an Rd-valued measurable functional. Further f is a measurable
function f : Rd → R+, and s = (s1, . . . , sd) ∈ Rd with s i = − logS i

0.
Analogously to the single asset case, we use the dampened payoff function

g(x) := e−〈R,x〉f(x) for x ∈ Rd,

and denote by % the measure defined by

%(dx) := e〈R,x〉PXT
(dx),

where R ∈ Rd serves as a dampening coefficient. Here 〈·, ·〉 denotes the
Euclidian scalar product in Rd. The scalar product is extended to Cd as
follows: for u, v ∈ Cd, set 〈u, v〉 =

∑
i uivi, i.e. we do not use the Hermitian

inner product. Moreover, MXT
and ϕXT

denote the moment generating,
resp. characteristic, function of the random vector XT .

To establish our results we will make use of the following assumptions.
(A1): Assume that g ∈ L1(Rd).
(A2): Assume that MXT

(R) exists.
(A3): Assume that %̂ ∈ L1(Rd).

Remark 3.1. We can also replace Assumptions (A1) and (A3) with the
following assumption
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(A1′): Assume that g ∈ L1
bc(Rd) and ĝ ∈ L1(Rd);

this shows again the interplay between the continuity properties of the payoff
function and the underlying distribution.

Theorem 3.2. If the asset price processes are modeled as exponential semi-
martingale processes according to (3.1)–(3.2) and conditions (A1)–(A3) are
in force, then the time-0 price function is given by

Vf (X; s) =
e−〈R,s〉

(2π)d

∫
Rd

e−i〈u,s〉MXT
(R+ iu)f̂(iR− u)du. (3.3)

Proof. Similarly to the one-dimensional case we have that

Vf (X; s) = e−〈R,s〉ḡ ∗ %(s). (3.4)

Since g ∈ L1(Rd) and %(Rd) < ∞, we get that ḡ ∗ % ∈ L1(Rd); thereforê̄g ∗ %(u) = ̂̄g(u)·%̂(u) for all u ∈ Rd. By assumption we know that %̂ ∈ L1(Rd);
moreover ̂̄g ∈ L∞(Rd) since |̂̄g| ≤ ‖g‖L1(Rd) <∞. These considerations yield
that ̂̄g ∗ % ∈ L1(Rd), again by using Young’s inequality.

Hence, applying the formula for the Fourier inversion, cf. Corollary 1.21
in Stein and Weiss (1971), we conclude that

Vf (X; s) =
e−〈R,s〉

(2π)d

∫
Rd

e−i〈u,s〉̂̄g(u)%̂(u)du
=

e−〈R,s〉

(2π)d

∫
Rd

e−i〈u,s〉MXT
(R+ iu)f̂(iR− u)du,

for a.e. s ∈ Rd.
Moreover, if s 7→ Vf (X; s) is continuous, then the equality holds pointwise

for all s ∈ Rd. The mapping (3.4) is continuous if the mapping s 7→ ḡ ∗ %(s)
is continuous. Using Assumption (A3) we have that % possesses a bounded
continuous Lebesgue density ρ ∈ L1(Rd); cf. Proposition 2.5 (xii) in Sato
(1999). Then ḡ ∗ % = ḡ ∗ ρ and

lim
|x|→0

ḡ ∗ %(s + x) = lim
|x|→0

∫
ḡ(s + x− z)ρ(z)dz

=
∫

lim
|x|→0

ḡ(s + y)ρ(x− y)dy = ḡ ∗ %(s) (3.5)

yielding the continuity of the map. Note that we have used the continuity of
ρ; additionally, we can interchange integration and limit using the dominated
convergence theorem, with majorant ḡ(·) maxx ρ(x). �

Remark 3.3. The proof using Assumption (A1′) follows analogously, with
the obvious modifications for (3.5).

3. Next, we consider the valuation of options on several assets when the
payoff function is discontinuous and the driving process does not necessarily
possess a Lebesgue density.

The main difference to the analogous situation in dimension one is that
the pointwise convergence of capped Fourier integrals – as is the case in Satz
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4.2.1 in Doetsch (1950) – cannot be generalized to the multidimensional case.
M. Pinsky gives the following astonishing example to illustrate this fact, see
section 4.1 in Pinsky (1993); let f be the indicator function of the unit ball
in R3, then

1
(2π)3

∫
|x|≤A

e−i〈u,x〉f̂(x)dx
∣∣∣
u=0

= 1− 2
π

sin(A) + o(1), (3.6)

for A ↑ ∞. Extrapolating the convergence results from the one-dimensional
case to R3, we would expect pointwise convergence of the spherical sum to
the indicator function, at least in the interior of the ball; on the contrary,
the right hand side of (3.6) is even divergent.

As a consequence, we only derive an L2-limit for the valuation function.
The setting is similar to the previous sections, and we need to impose the

following conditions.
(G1): Assume that g ∈ L1(Rd) ∩ L2(Rd).
(G2): Assume that MXT

(R) exists.

Theorem 3.4. If the asset price process is modeled as an exponential semi-
martingale process according to (3.1)–(3.2) and conditions (G1)–(G2) are in
force, then the time-0 price function satisfies

Vf (X; ·) =
e−〈R,·〉

(2π)d
L2- lim
A→∞

∫
[−A,A]d

e−i〈u,·〉ϕXT
(u− iR)f̂(iR− u)du. (3.7)

Proof. Similarly to the previous section, we have that

Vf (X; s) = e−〈R,s〉ḡ ∗ %(s), (3.8)

and, for all u ∈ Rd ̂̄g ∗ %(u) = ̂̄g(u) · %̂(u). (3.9)

Now, since ḡ ∈ L1(Rd) ∩ L2(Rd), we get that ̂̄g ∈ L2(Rd) and ‖ḡ‖L2(Rd) =
‖̂̄g‖L2(Rd); the proofs are analogous to Theorem 9.13 in Rudin (1987). More-
over, we have that ḡ ∗ % ∈ L2(Rd), because

‖ḡ ∗ %‖2
L2(Rd) ≤ %(Rd)2 ‖ḡ‖2

L2(Rd) <∞.

Therefore, since also ḡ ∗ % ∈ L1(Rd) we get that ḡ ∗ % ∈ L1(Rd) ∩ L2(Rd)
and, analogously again to Theorem 9.13 in Rudin (1987), we get that ̂̄g ∗ % ∈
L2(Rd) and ‖ḡ ∗ %‖L2(Rd) = ‖ ̂̄g ∗ %‖L2(Rd).

Therefore, the Fourier transform in (3.9) can be inverted and the inversion
is given as an L2-limit; more precisely, we have

‖ḡ ∗ %− ψA‖L2(Rd) → 0 (A→∞) (3.10)

where

ψA(s) =
1

(2π)d

∫
[−A,A]d

e−i〈u,s〉 ̂̄g ∗ %(u)du
=

1
(2π)d

∫
[−A,A]d

e−i〈u,s〉f̂(iR− u)ϕXT
(u− iR)du. (3.11)
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Finally, (3.8) and (3.10)–(3.11) yield the option price function. �

Remark 3.5. The problem becomes significantly simpler when dealing with
the product f1(XT )f2(YT ) of a continuous payoff function f1 for the vari-
able X and a discontinuous payoff function f2 for the other variable Y , even
in the absence of Lebesgue densities. A typical example of this situation is
the barrier option payoff, where f1(x) = (ex − K)+ and f2(y) = 1{ey>B}.
Then, one can make a measure change using the (normalized) continuous
payoff as the Radon–Nikodym derivative, apply Theorem 2.2 and then The-
orem 2.7; this leads to pointwise convergence of the valuation function. The
measure change argument is outlined in Borovkov and Novikov (2002) and
Papapantoleon (2007, Theorem 3.5).

4. Sensitivities – Greeks

The structure of the asset price model as an exponential semimartingale,
and the resulting structure of the option price function, allows us to easily
derive general formulas for the sensitivities of the option price with respect
to model parameters. In this section we will focus on the sensitivities with
respect to the initial value, i.e. delta and gamma, while sensitivities with
respect to other parameters can be derived analogously.

Let us rewrite the option price function as a function of the initial value,
using that S0 = e−s , as follows:

Vf (X;S0) =
1
2π

∫
R

SR−iu
0 MXT

(R− iu)f̂(u+ iR)du. (4.1)

The delta of an option is the partial derivative of the price with respect to
the initial value. For a generic option with payoff f , we have that

∆f (X;S0) =
∂Vf (X;S0)

∂S0

=
1
2π

∫
R

∂

∂S0
SR−iu

0 MXT
(R− iu)f̂(u+ iR)du

=
1
2π

∫
R

SR−1−iu
0 MXT

(R− iu)
f̂(u+ iR)
(R− iu)−1

du. (4.2)

The gamma of an option is the partial derivative of the delta with respect
to the initial value. For a generic option with payoff f , we get

Γf (X;S0) =
∂∆f (X;S0)

∂S0
=
∂2Vf (X;S0)

∂2S0

=
1
2π

∫
R

SR−2−iu
0

MXT
(R− iu)f̂(u+ iR)

(R− 1− iu)−1(R− iu)−1
du. (4.3)

In the above equations we have taken for granted that we can exchange
integration and differentiation; however, this is the crucial step and we will
provide sufficient conditions when we are allowed to do that. Using Satz
IV.5.7 in Elstrodt (1999) and the elementary inequality |Imf |+|Ref | ≤ 2|f |,
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we get that we can differentiate under the integral sign if there exists an
integrable function ℘ such that for all u ∈ R and all S0 > 0∣∣∣ ∂

∂S0
F (u, S0)

∣∣∣ ≤ ℘(u),

where

F (u, S0) = SR−iu
0 MXT

(R− iu)f̂(u+ iR).

Now we can estimate the partial derivative of the function F :∣∣∣ ∂
∂S0

F (u, S0)
∣∣∣ = |e(R−1−iu) log S0 ||R− iu||MXT

(R− iu)f̂(u+ iR)|

≤ c(1 + |u|)|MXT
(R− iu)||f̂(u+ iR)| =: ℘(u). (4.4)

Analogously we can estimate for the second derivative of F :∣∣∣ ∂2

∂S2
0

F (u, S0)
∣∣∣ ≤ c ′(1 + |u|2)|MXT

(R− iu)||f̂(u+ iR)| =: ℘′(u). (4.5)

Sufficient conditions for the function ℘ in (4.4), resp. ℘′ in (4.5), to be
integrable are that |u||MXT

(R− iu)|, resp. |u|2|MXT
(R− iu)|, is integrable

and f̂(·+ iR) is bounded; the first condition dictates in particular that the
measure PXT

– equivalently % – has a density of class C1, resp. C2; see
Proposition 28.1 in Sato (1999). Alternatively, a sufficient condition is that
the function |u||f̂(u+iR)|, resp. |u|2|f̂(u+iR)|, is integrable andMXT

(R−i·)
is bounded, highlighting once again the interplay between the properties of
the measure and the payoff function.

5. Examples of payoff functions

1. Here we list some representative examples of payoff functions used in fi-
nance, together with their Fourier transforms and comment on whether they
satisfy some of the required assumptions for option pricing. The calculations
for the call option are provided explicitly and for other options they follow
along the same lines.

Example 5.1 (Call and put option). The payoff of the standard call option
with strike K ∈ R+ is f(x) = (ex −K)+. Let z ∈ C with =z ∈ (1,∞), then
the Fourier transform of the payoff function of the call option is

f̂(z) =
∫
R

eizx(ex −K)+dx =

∞∫
ln K

e(1+iz)xdx−K

∞∫
ln K

eizxdx

= −K1+iz 1
1 + iz

+KizK

iz
=

K1+iz

iz(1 + iz)
. (5.1)

Now, regarding the dampened payoff function of the call option, we easily
get for R ∈ (1,∞) that g ∈ L1

bc(R) ∩ L2(R). The weak derivative of g is

∂g(x) =
{

0, if x < lnK,
e−Rx(ex −Rex +RK), if x > lnK. (5.2)

Again, we have that ∂g ∈ L2(R). Therefore, g ∈ H1(R) and using Lemma
2.5 we can conclude that ĝ ∈ L1(R). Summarizing, conditions (C1) and (C3)
of Theorem 2.2 are fulfilled for the payoff function of the call option.
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Similarly, for a put option, where f(x) = (K − ex)+, we have that

f̂(z) =
K1+iz

iz(1 + iz)
, =z ∈ (−∞, 0). (5.3)

Analogously to the case of the call option, we can conclude for the dampened
payoff function of the put option that g ∈ L1

bc(R) and g ∈ H1(R) for R < 0,
yielding ĝ ∈ L1(R). Hence, conditions (C1) and (C3) of Theorem 2.2 are
also fulfilled for the payoff function of the put option.

Example 5.2 (Digital option). The payoff of a digital call option with
barrier B ∈ R+ is 1{ex>B}. Let z ∈ C with =z ∈ (0,∞), then the Fourier
transform of the payoff function of the digital call option is

f̂(z) = −B
iz

iz
. (5.4)

Similarly, for a digital put option, where f(x) = 1{ex<B}, we have that

f̂(z) =
Biz

iz
, =z ∈ (−∞, 0). (5.5)

For the dampened payoff function of the digital call and put option, we can
easily check that g ∈ L1(R) for R ∈ (0,∞) and R ∈ (−∞, 0).

Regarding the continuity and bounded variation properties of the value
function, we have that

Vf (X, s) = E
[
1{eXT−s >B}

]
= P

(
XT > log(B) + s

)
= 1− FXT

(
log(B) + s

)
,

where FXT
denotes the cumulative distribution function of XT . Therefore,

s 7→ Vf (X, s) is monotonically decreasing, hence it has locally bounded
variation. Moreover, we can conclude that s 7→ Vf (X, s) is continuous if the
measure PXT

is atomless.
Summarizing, condition (D1) is always satisfied for the payoff function of

the digital option, while the prerequisites of Theorem 2.7 on continuity and
bounded variation are satisfied if the measure PXT

does not have atoms.

Example 5.3. A variant of the digital option is the so-called asset-or-
nothing digital, where the option holder receives one unit of the asset, instead
of currency, depending on whether the underlying reaches some barrier or
not. The payoff of the asset-or-nothing digital call option with barrier B ∈
R+ is f(x) = ex1{ex>B}, and the Fourier transform, for z ∈ C with =z ∈
(1,∞), is

f̂(z) = −B
1+iz

1 + iz
. (5.6)

Arguing analogously to the previous example, we can deduce that condition
(D1) is always satisfied for the payoff function of the asset-or-nothing digital
option, while the prerequisites of Theorem 2.7 are satisfied if the measure
PXT

does not have atoms.

Example 5.4 (Double digital option). The payoff of the double digital call
option with barriers B,B > 0 is 1{B<ex<B}. Let z ∈ C\{0}, then the Fourier
transform of the payoff function is

f̂(z) =
1
iz

(
B

iz −Biz
)
. (5.7)
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The dampened payoff function of the double digital option satisfies g ∈
L1(R) for all R ∈ R.

Moreover, we can decompose the value function of the double digital op-
tion as

Vf (X, s) = Vf1(X, s)− Vf2(X, s),

where f1(x) = 1{ex<B} and f2(x) = 1{B≤ex}. Hence, by the results of Exam-
ple 5.2, we get that condition (D1) is always satisfied for the payoff function
of the double digital option, while the prerequisites of Theorem 2.7 are sat-
isfied if the measure PXT

does not have atoms.

Example 5.5 (Self-quanto and power options). The payoff of a self-quanto
call option with strike K ∈ R+ is f(x) = ex(ex−K)+. The Fourier transform
of the payoff function of the self-quanto call option, for z ∈ C with =z ∈
(2,∞), is

f̂(z) =
K2+iz

(1 + iz)(2 + iz)
. (5.8)

The payoff of a power call option with strike K ∈ R+ and power 2 is f(x) =
[(ex −K)+]2; for z ∈ C with =z ∈ (2,∞), the Fourier transform is

f̂(z) = − 2K2+iz

iz(1 + iz)(2 + iz)
. (5.9)

The payoff functions for the respective put options are defined in the obvi-
ous way, while the Fourier transforms are identical, with the range for the
imaginary part of z being respectively (−∞, 1) and (−∞, 0).

Analogously to Example 5.1, we can deduce that conditions (C1) and
(C3) of Theorem 2.2 are fulfilled for the payoff function of the self-quanto
and the power option.

Remark 5.6. For power options of higher order we refer to Raible (2000,
Chapter 3).

2. Next we present some examples of payoff functions for options on several
assets and for options on multiple functionals of one asset, together with
their corresponding Fourier transforms.

Example 5.7 (Option on the minimum/maximum). The payoff function of
a call option on the minimum of d assets is

f(x) = (ex1 ∧ · · · ∧ exd −K)+,

for x ∈ Rd. The Fourier transform of this payoff function is

f̂(z) = − K1+i
∑d

k=1 zk

(−1)d(1 + i
∑d

k=1 zk)
∏d

k=1(izk)
, (5.10)

where z ∈ Cd with =zk > 0 for 1 ≤ k ≤ d and =(
∑d

k=1 zk) > 1; for more
details we refer to Appendix A. Then, we can easily deduce for the dampened
payoff function that g ∈ L1

bc(Rd).
Moreover, for the put option on the maximum of d assets, the payoff

function is

f(x) = (K − ex1 ∨ · · · ∨ exd)+,
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for x ∈ Rd, where a ∨ b = max{a, b}. The Fourier transform is

f̂(z) =
K1+i

∑d
k=1 zk

(1 + i
∑d

k=1 zk)
∏d

k=1(izk)
, (5.11)

with the restriction now being =zk < 0 for all 1 ≤ k ≤ d. Again, we can easily
deduce that the dampened payoff function satisfies g ∈ L1

bc(Rd). Therefore,
condition (A1) of Theorem 3.2 is satisfied.

Example 5.8. A natural example of multi-asset payoff functions are prod-
ucts of single asset payoff functions. These payoff functions have the form

f(x) =
d∏

i=1

fi (xi ),

for x ∈ Rd, where xi ∈ R and fi : R → R+, for all 1 ≤ i ≤ d; for example,
one can consider f1(x1) = (ex1 −K)+ and f2(x2) = 1{ex2>B}.

The Fourier transform of these payoff functions is simply the product of
the Fourier transform of the ‘marginal’ payoff functions, since

f̂(z) =
∫
Rd

ei〈z,x〉
d∏

i=1

fi (xi )dx =
d∏

i=1

∫
R

eizi xifi (xi )dxi =
d∏

i=1

f̂i (zi ),

for z ∈ Cd and zi ∈ C, with =z in an appropriate range such that ĝ ∈ L1(Rd).
This range, as well as other properties of f̂ , are dictated by the corresponding
properties of the Fourier transforms f̂i of the marginal payoff functions fi .

Remark 5.9. Further examples of multiple asset payoff functions, such as
basket and spread options, and their Fourier transforms can be found in
Hubalek and Kallsen (2005).

3. We add a short remark on the rate of decay of the Fourier transform of the
various payoff functions and its consequence for numerical implementations.

Consider the standard call option, where the Fourier transform of the
dampened payoff function has the form, cf. (5.1),

ĝ(u) =
K1−Reiu log K

(R− iu)(R− 1− iu)
, u ∈ R.

Then, we have that

|ĝ(u)| ≤ K1−R

√
R2 + u2

√
(R− 1)2 + u2

≤ K1−R

(R− 1)2 + u2
,

which shows that ĝ(u) behaves like 1
u2 for |u| > 1. On the other hand, a

similar calculation for the digital option shows that the Fourier transform
of the dampened digital payoff behaves like 1

u for |u| > 1.
Therefore, splitting a call option into the difference of an asset-or-nothing

digital and a digital option, as many authors have proposed in the literature
(cf. e.g. Heston 1993), is not only ‘conceptually’ sub-optimal, as can be seen
by Theorems 2.2 and 2.7. More importantly, it is also not optimal from the
numerical perspective, since the rate of decay for the digital option is much
slower than for the call option, leading to slower numerical evaluation of the
corresponding option prices.
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Indeed, we have calculated the prices of call options corresponding to 11
strikes and 10 maturities, first using the formula for the call option, and
then representing the call option as the difference of two digital options.
The numerical calculation using the second method lasts twice as long (6
secs compared to less than 3 secs) in a standard Matlab implementation.

6. Examples of driving processes

The application of Fourier transform valuation formulas in practice re-
quires the explicit knowledge of the moment generating function of the
underlying random variable. As such, Fourier methods are tailor-made for
pricing European options in Lévy and affine models, since in these models
one typically knows the moment generating function explicitly (at least up
to the solution of a Riccati equation). In order to give a flavor, we present
here an overview of Lévy and affine processes, referring to the literature for
specific formulas and proofs.

In Lévy processes, the moment generating function of the random variable
is described by the celebrated Lévy–Khintchine formula; for a Lévy process
H = (Ht)0≤t≤T with triplet (b, c, λ) we have:

E
[
e〈u,Ht〉] = exp (κ(u) · t) , (6.1)

for suitable u ∈ Rd, where the cumulant generating function is

κ(u) = 〈b, u〉+
1
2
〈u, cu〉+

∫
Rd

(
e〈u,x〉 − 1− 〈u, h(x)〉

)
λ(dx); (6.2)

here h denotes a suitable truncation function. The most popular Lévy mod-
els are the VG and CGMY processes (cf. Madan and Seneta 1990, Carr
et al. 2002), the hyperbolic, NIG and GH processes (cf. Eberlein and Keller
1995, Barndorff-Nielsen 1998, Eberlein 2001), and the Meixner model (cf.
Schoutens and Teugels 1998).

In affine processes, the moment generating functions are described by the
very definition of these processes. Let X = (Xt)0≤t≤T be an affine process on
the state space D = Rm×Rn

+ ⊆ Rd, starting from x ∈ D; i.e., under suitable
conditions, there exist functions φ : [0, T ]× I → R and ψ : [0, T ]× I → Rd

such that

Ex

[
e〈u,Xt〉] = exp (φt(u) + 〈ψt(u), x〉) , (6.3)

for all (t, u, x) ∈ [0, T ] × I × D, I ⊆ Rd. The functions φ and ψ satisfy
generalized Riccati equations, while their time derivatives

F (u) =
∂

∂t

∣∣
t=0

φt(u) and R(u) =
∂

∂t

∣∣
t=0

ψt(u),

are of Lévy–Khintchine form (6.2); we refer to Duffie et al. (2003) and Keller-
Ressel (2008) for comprehensive expositions and the necessary details. The
class of affine processes contains as special cases – among others – many sto-
chastic volatility models, such as the Heston (1993) model, the BNS model
(cf. Barndorff-Nielsen and Shephard 2001, Nicolato and Venardos 2003), and
time-changed Lévy models (cf. Carr et al. 2003, Kallsen 2006).
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7. Numerical illustration

As an illustration of the applicability of Fourier-based valuation formulas
even for the valuation of options on several assets, we present a numerical
example on the pricing of an option on the minimum of two assets. As driving
motions we consider a 2d normal inverse Gaussian (NIG) Lévy process and
a 2d affine stochastic volatility model.

Let H denote a 2d NIG random variable, i.e.

H = (H1,H2) ∼ NIG2(α, β, δ, µ,∆),

where the parameters have the following domain of definition: α, δ ∈ R+,
β, µ ∈ R2, and ∆ ∈ R2×2 is a symmetric, positive-definite matrix; w.l.o.g. we
can assume that det(∆) = 1; in addition, α2 > 〈β,∆β〉. Then, the moment
generating function of H, for u ∈ R2 with α2 − 〈β + u,∆(β + u)〉 ≥ 0, is

MH(u) = exp
(
〈u, µ〉+ δ

(√
α2 − 〈β,∆β〉 −

√
α2 − 〈β + u,∆(β + u)〉

))
.

(7.1)

In the NIG2 model, we specify the parameters α, β, δ and ∆, and the drift
vector µ is determined by the martingale condition. Note that the marginals
H i are also NIG distributed (cf. Blæsild 1981, Theorem 1), hence the drift
vector can be easily evaluated from the cumulant of the univariate NIG
law. The covariance matrix corresponding to the NIG2-distributed random
variable H is

ΣNIG = δ
(
α2 − 〈β,∆β〉

)− 1
2

(
∆ +

(
α2 − 〈β,∆β〉

)−1 ∆ββ>∆
)
,

cf. Prause (1999, eq. (4.15)). A comprehensive exposition of the multivariate
generalized hyperbolic distributions can be found in Blæsild (1981); cf. also
Prause (1999).

We will also consider the following affine stochastic volatility model intro-
duced by Dempster and Hong (2002), that extends the framework of Heston
(1993) to the multi-asset case. Let H = (H1,H2) denote the logarithm of
the asset price processes S = (S1, S2), i.e. H i = logS i ; then, H i , i = 1, 2
satisfy the following SDEs:

dH1
t = −1

2
σ2

1vtdt+ σ1
√
vtdW 1

t

dH2
t = −1

2
σ2

2vtdt+ σ2
√
vtdW 2

t

dvt = κ(µ− vt)dt+ σ3
√
vtdW 3

t ,

with initial valuesH1
0 ,H

2
0 , v0 > 0. The parameters have the following domain

of definition: σ1, σ2, σ3 > 0 and µ, κ > 0. Here W = (W 1,W 2,W 3) denotes
a 3-dimensional Brownian motion with correlation coefficients

〈W 1,W 2〉 = ρ12, 〈W 1,W 3〉 = ρ13, and 〈W 2,W 3〉 = ρ23.
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The moment generating function of the vector H = (H1,H2) has been
calculated by Dempster and Hong (2002); for u = (u1, u2) ∈ R2 we have

MHt(u) = exp
(
〈u,H0〉+

2ζ(1− e−θt)
2θ − (θ − γ)(1− e−θt)

· v0

− κµ

σ2
3

[
2 · log

(2θ − (θ − γ)(1− e−θt)
2θ

)
+ (θ − γ)t

])
,

where ζ = ζ(u), γ = γ(u), and θ = θ(u) are

ζ =
1
2

(
σ2

1u
2
1 + σ2

2u
2
2 + 2ρ12σ1σ2u1u2 − σ2

1u1 − σ2
2u2

)
,

γ = κ− ρ13σ1σ3u1 − ρ23σ2σ3u2,

θ =
√
γ2 − 2σ2

3ζ.

We can deduce that all three models satisfy conditions (A2) and (A3) of
Theorem 3.2 for certain values of R. Explicit calculations for the 2d NIG
model are deferred to Appendix B; analogous calculations yield the results
for the other models.

The Fourier transform of the payoff function f(x) = (ex1 ∧ ex2 − K)+,
x ∈ R2, corresponding to the option on the minimum of two assets is given
by (5.10) for d = 2, and we get that condition (A1) of Theorem 3.2 is
satisfied for R1, R2 > 0 such that R1 +R2 > 1.

Therefore, applying Theorem 3.2, the price of an option on the minimum
of two assets is given by

MTAT (S1, S2;K) =
1

4π2

∫
R2

(S1
0)R1+iu1(S2

0)R2+iu2MHT
(R1 + iu1, R2 + iu2)

× K1−R1−R2−iu1−iu2

(R1 + iu1)(R2 + iu2)(R1 +R2 − 1 + iu1 + iu2)
du,

where MHT
denotes the moment generating function of the random vector

HT , and R1, R2 are suitably chosen.
In the numerical illustrations, we consider the following parameters: strikes

K = {85, 90, 92.5, 95, 97.5, 100, 102.5, 105, 107.5, 110, 115}
and times to maturity

T =
{

1
12 ,

2
12 , 0.25, 0.50, 0.75, 1.00

}
.

In the 2d NIG model, we consider some typical parameters, e.g. S1
0 = 100,

S2
0 = 95, α = 6.20, β1 = −3.80, β2 = −2.50 and δ = 0.150; we consider two

matrices ∆+ =
(

1 0
0 1

)
and ∆− =

(
1 −1
−1 2

)
, which give positive and negative

correlations respectively; indeed we get that

Σ+
NIG =

(
0.0646 0.0191
0.0191 0.0481

)
and Σ−

NIG =
(

0.0287 −0.0258
−0.0258 0.0556

)
.

The option prices in these two cases are exhibited in Figure 1.
Finally, in the stochastic volatility model we consider the parameters used

in Dempster and Hong (2002), that is S1
0 = 96, S2

0 = 100, σ1 = 0.5, σ2 = 1.0,
σ3 = 0.05, ρ12 = 0.5, ρ13 = 0.25, ρ23 = −0.5, v0 = 0.04, κ = 1.0 and
µ = 0.04; the option prices are shown in Figure 2.
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Figure 1. Option prices in the 2d NIG model with positive
(left) and negative (right) correlation.
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Figure 2. Option prices in the 2d stochastic volatility model.

Appendix A. Fourier transforms of multi-asset options

In this appendix we outline the derivation of the Fourier transform cor-
responding to the payoff function of an option on the minimum of several
assets; the derivation for the maximum is completely analogous and there-
fore omitted.

The payoff of a (call) option on the minimum of d assets is

(S1 ∧ S2 ∧ · · · ∧ Sd −K)+.

The payoff function f corresponding to this option is given, for x ∈ Rd, by

f(x) = (ex1 ∧ ex2 ∧ · · · ∧ exd −K)+ = (ex1∧x2∧···∧xd −K)+.

The following decomposition holds, if xi 6= xj for i 6= j, 1 ≤ i, j ≤ d

f(x) =
d∑

i=1

(exi −K)+1{xi≤xj ,∀j} =
d∑

i=1

(exi −K)
d∏

j=1
j 6=i

1{k<xi<xj},
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where k = logK. Define also the auxiliary functions fi, 1 ≤ i ≤ d, where

fi(x) = (exi −K)
d∏

j=1
j 6=i

1{k<xi<xj}.

The dampened payoff function is g(x) = e−〈R,x〉f(x), where R ∈ Rd;
we define analogously the dampened fi-functions, i.e. gi(x) = e−〈R,x〉fi(x).
For simplicity, we first calculate the Fourier transform of the dampened
f1-function; for u ∈ Rd we get

ĝ1(u) =
∫
Rd

e〈iu−R,x〉(ex1 −K)
d∏

j=2

1{k<x1≤xj}dx

=

∞∫
k

∞∫
x1

. . .

∞∫
x1

e〈iu−R,x〉(ex1 −K)dxd . . .dx1

=

∞∫
k

e(iu1−R1)x1(ex1 −K)

 d∏
j=2

∞∫
x1

e(iuj−Rj)xjdxj

dx1

=

∞∫
k

e(iu1−R1)x1(ex1 −K)
d∏

j=2

(
−e(iuj−Rj)x1

iuj −Rj

)
dx1

=
1∏d

j=2(Rj − iuj)

∞∫
k

e
∑d

j=1(iuj−Rj)x1(ex1 −K)dx1

=
1∏d

j=2(Rj − iuj)

(
− K1+

∑d
j=1(iuj−Rj)

1 +
∑d

j=1(iuj −Rj)
+
K1+

∑d
j=1(iuj−Rj)∑d

j=1(iuj −Rj)

)

=
K1+

∑d
j=1(iuj−Rj)∏d

j=2(Rj − iuj)×
(
1 +

∑d
j=1(iuj −Rj)

)
×
(∑d

j=1(iuj −Rj)
) ,

subject to the conditions Rj > 0 for all j ≥ 2 and
∑d

j=1Rj > 1.
Hence, in general we have that

ĝl(u) =
K1+

∑d
j=1(iuj−Rj)∏d

j=1
j 6=l

(Rj − iuj)×
(
1 +

∑d
j=1(iuj −Rj)

)
×
(∑d

j=1(iuj −Rj)
) ,

subject to the conditions Rj > 0 for all 1 ≤ j ≤ d and
∑d

j=1Rj > 1.
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Now, we recall that f(x) =
∑d

l=1 fl(x), hence g(x) =
∑d

l=1 gl(x) which
yields ĝ(u) =

∑d
l=1 ĝl(u); therefore

ĝ(u) =
d∑

l=1

K1+
∑d

j=1(iuj−Rj)∏d
j=1
j 6=l

(Rj − iuj)×
(
1 +

∑d
j=1(iuj −Rj)

)
×
(∑d

j=1(iuj −Rj)
)

=
K1+

∑d
j=1(iuj−Rj)(

1 +
∑d

j=1(iuj −Rj)
)
×
(∑d

j=1(iuj −Rj)
) d∑

l=1

Rl − iul∏d
j=1(Rj − iuj)

=
−K1+

∑d
j=1(iuj−Rj)

(−1)d
∏d

j=1(iuj −Rj)
(
1 +

∑d
j=1(iuj −Rj)

) .
This we can also rewrite as

f̂(z) = − K1+i
∑d

j=1 zj

(−1)d
∏d

j=1(izj)
(
1 + i

∑d
j=1 zj

) , (A.1)

subject to the conditions =zj > 0 for all 1 ≤ j ≤ d and
∑d

j=1=zj > 1.

Appendix B. Calculations for the 2d NIG model

By the moment generating function of the 2d NIG process, cf. (7.1), it is
evident that assumption (A2) is satisfied for R ∈ R2 with α2−〈β+R,∆(β+
R)〉 ≥ 0. In order to verify condition (A3) we have to show that the function
u 7→ MH(R + iu) is integrable; it suffices to show that the real part of the
exponent of MH(R+ iu) decays like −|u|. We have

log
(
MH(R+ iu)

)
= i〈µ, u〉+ 〈µ,R〉+ δ

√
α2 − 〈β,∆β〉

− δ
√
α2 − 〈β +R+ iu,∆(β +R+ iu)〉 .

Recall that the product 〈·, ·〉 over Cd is defined as follows: for u, v ∈ Cd set
〈u, v〉 =

∑
i uivi. Then

〈β +R+ iu,∆(β +R+ iu)〉
= 〈β +R,∆(β +R)〉 − 〈u,∆u〉+ 2i〈β +R,∆u〉

and since
√
z =

√
1
2(|z|+ <(z)) + i =(z)

|=(z)|

√
1
2(|z| − <(z)), we get

<
(
log
(
MH(R+ iu)

))
= 〈µ,R〉+ δ

√
α2 − 〈β,∆β〉 − δ√

2

{∣∣α2 − 〈β +R+ iu,∆(β +R+ iu)〉
∣∣

+ α2 − 〈β +R,∆(β +R)〉+ 〈u,∆u〉
}1/2

≤ 〈µ,R〉+ δ
√
α2 − 〈β,∆β〉 − δ

√
α2 − 〈β +R,∆(β +R)〉+ 〈u,∆u〉

≤ 〈µ,R〉+ δ
√
α2 − 〈β,∆β〉 − δ

√
λmin|u| ,

where λmin denotes the smallest eigenvalue of the matrix ∆.
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for Lévy processes. Math. Finance 13, 345–382.
Carr, P. and D. B. Madan (1999). Option valuation using the fast Fourier

transform. J. Comput. Finance 2 (4), 61–73.
Cont, R. and P. Tankov (2003). Financial Modelling with Jump Processes.

Chapman and Hall/CRC Press.
Deitmar, A. (2004). A First Course in Harmonic Analysis (2nd ed.).

Springer.
Dempster, M. A. H. and S. S. G. Hong (2002). Spread option valuation

and the fast Fourier transform. In Mathematical Finance – Bachelier
Congress 2000, pp. 203–220. Springer.

Doetsch, G. (1950). Handbuch der Laplace-Transformation. Birkhäuser.
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